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ABSTRACT

The attitude stability of motion of satellites in the neighbor-
hood of equilibrium positions has been studied extensively, however, it
is found that these studies have been limited principally to autonomous
systems, i.e., systems for which the equations of motion do not exhibit
explicit time dependence. The fact remains that a number of important
satellite problems are defined by equations of motion containing time-
dependent coefficients. Two such examples are: (a) the case in which
an unsymmetric satellite moves in a circular orbit and (b) the case in
which a symmetric satellite moves in an elliptical orbit. The resulting
nonautonomous systems are of a special type in the sense that some of
the coefficients appearing in the equations of motion are periodic
functions of time. Furthermore, the periodic terms have relatively
small amplitudes when campared to the terms with constant coefficients.

There are no general methods available for investigating the
stability of motion of multi-degree-of-freedom systems with periodic
coefficients such as the type encountered in problems dealing with
rotating bodies. The only method used with any degree of success
consists of a numerical integration of the eguations of motion in
conjunction with Floquet's theory. This method is not very satisfactory
because, as with any numerical integration, it investigates the stability
of the system only at discrete points in the parameter space. This

research develops techniques enabling one to investigate stability in
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entire regions of the parameter space. Three separate methods of analysis
are employed, which together yield the required stability information.
The first technique consists of an adaptation of the Liapounov second
or "direct" method of analysis into a form that is suitable for use with
the periodic systems. The difference between the Hamiltonian function
and the Hamiltonian function evaluated at an equilibrium position is
shown to be a suitable testing function for use with the stability
theorem. This method is used to describe one type of instability boundary
and to show the approximate locations of the resonant instability regions.
A second method of analysis is developed which is suitable for describ-
ing the regions of parametric resonance of multi-degree-of-freedom, linear,
periodic systems of the type encountered in rigid body dynamics problems.
Because periodic motion can take place on the boundaries of the resonance
regions an infinite determinant is written, the value of which must be
zero on the boundaries of the instability regions. This determinant is
then used to define the boundaries of the regions of instability. A third
method of analysis is employed in which asymptotic methods (in the sense
of Krilov-Bogoliubov-Mitropolsky) are applied to the multi-degree-of-
freedom periodic systems. This technique allows additional regions of
instability to be defined and, in contrast with the infinite determinant
approach, it is applicable to both linegr and nonlinear systems.

The problem of the stability of motion of a rigid spinning
satellite which has unequal moments of intertia about axes perpendicular
to the spin axis and whose mass center moves in a circular orbit is

studied using the techniques described above. The boundaries of the
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regions of instability are defined for the motian of the linearized
system in the neighborhood of the equilibrium position in which the
spin axis is normal to the orbit plane. Unstable regions identified as
principal instability regions are in agreement with previous researchers.
On the other hand, unstable motion is shown to exist in regions that
were presumed to be stable by previous researchers.

The stability of motion of a spinning, rigid symmetric satel-
lite in an elliptic orbit has also been investigated. Consideration is
given to the linearized as well as the nonlinear system and the equili-
brium position in which the spin axis is normal to the orbit plane is
investigated. The analysis of the linearized system cen be directly
compared to a previous investigation and reasonable agreement is ob-
tained. Even for the linearized system, the present analysis is much
more meaningful since it furnishes continuous stability diagrams rather
than diagrams consisting of isolated points. 1In addition to the instabi-
lity regions predicted by the linearized system, new instability regions
assoclated with the nonlinear terms are obtained; the occurrence of non-~
linear "stiffening" of the system tending to limit the amplitude of
resonance oscillation is noted. No previous analysis of the complete

nonlinear system of equations is known to have been performed.
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SECTION I

INTRODUCTION

1.1 Statement of the Problem

The motion of artificial earth satellites can be described in
many cases by the translational motion of the center of mass and the
rotational motion of a satellite about its center of mass. The latter
motion is referred to as the attitude motion and forms the object of
our interest.

Investigations of the attitude motions of space satellites are
of current interest since random orientation or uncontrolled tumbling
is undesirable in many cases as it may interfere with the mission
requirements for communication or observation. The satellite attitude
may be controlled by active or passive means. Active systems require
attitude sensors and control devices that impose weight and reliebility
penalties on the satellite. On the other hand, passive attitude control
may be applied in some cases and is of interest because it may be
achieved with little or no penalty to the satellite. The present study
deals with the passive attitude control of a spinning rigid satellite.

The attitude motion of a satellite can be defined with respect to
an inertial system of coordinates, however, it is more convenient to
define it with respect to an orbiting system of coordinates. In the

case of a circular orbit, the orbiting system of coordinates consists of



two axes in the orbit plane, one tangent and one normal to the orbit,

and a third axis perpendicular to the orbit plane. For an elliptic

orbit, the two axes in the orbit plane are along the radial and transverse
directions. The configuration in which the satellite attitude motion is
unaccelerated is called an equilibrium configuration. Of interest is

the attitude motion in the neighborhood of an equilibrium configuration
and in particular the stability of this motion.

A system described by differential equations with constant
coefficients is called autonomous. Spinning satellite problems defined
by autonomous systems of differential equations have been investigated
extensively. For the most part, the study has been restricted to
symmetric satellites with arbitrary spin or to asymmetric satellites
with zero spin relative to an orbiting frame of reference whereas the
center of the satellite was confined to a circular orbit. The major
force acting upon the satellites was due to a radially symmetric
inverse square gravitational field. Adequate mathematical techniques
for the treatment of autonomous systems are available.

Systems defined by differential equations with time-dependent
coefficients are said to be nonautonomous. The investigation of
nonautonomous satellite dynamics problems has been very limited due to
lack of adequate mathematical techniques. This research has been devoted
to the development of mathematical techniques for the stability investi-

gation of the motion of satellites described by nonautonomous systems
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of equations, and in particular systems with periodic coefficients.

The methods of analysis have been applied to the problem of a slightly
asymetric satellite with arbitrary spin confined to a circular orbit
and the problem of a spinning symmetric satellite moving in an elliptic

orbit of low eccentricity.

l.2 Status of Satellite Stability Research

The two major methods of passive stabilization of satellites
are gravity-gradient stabilization and spin stabilization. For a
body in a circular orbit with zero spin relative to an orbiting frame
of reference, the differential-gravity torque tends to align the axis
of minimum moment of inertia with the radial direction from the center
of force to the center of mass of the satellite. A spin-stabilized
body tends to maintain the direction of the spin axis fixed in an
inertial space if no disturbing torques are present. In this case,
differential-gravity torques can be used to impart the spin axis s
steady precession.

Previous work [1) has shown that for rigid bodies the attitude
motion has negligible effect upon the orbital motion of the body center
of mass, provided the satellite dimensions are small relative to the
distance to the center of force. This allows one to reduce the degree
of freedom of the dynamical system by assuming that the orbital motion

is known. This assumption, referred to as orbital constraints, has

been widely used in the study of the attitude motion of spinning satellites.



There are various factors affecting the attitude motion of a
satellite. At moderately high altitudes the dominant torque is the
differential=-gravity torque L2]. At low altitudes the aerodynamic
torques may become predominant. Analyses by Beletskii [3] showed
that aerodynamic and gravity torques can disturb the motion of a spinning
satellite to the extent that an equilibrium may not exist. Using an
energy approach Thomson and Reiter L4] and Meirovitch [5] have shown
that, for certain satellite configuration, internal energy dissipation
due to hysteretic damping can destabilize the spinning motion of a
satellite.

Stable equilibrium configurations in the presence of gravity
torques have been found for a mmber of cases involving rigid satellites
in a circular orbit. DeBra and Delp [6] investigated the stability of
a satellite of unequal moments of inertie possessing zero spin relative
to an orbiting frame of reference whereas its mass center was moving in
a circular orbit. The attitude stability of a symmetric satellite
with arbitrary spin confined to a circular orbit was studied by Thomson L7].
Both works, L6] and [7], used an infinitesimel analysis. The stability
of a gravity-gradient stabilized satellite was investigated by
Beletskii [8] by means of the Liapounov direct method. Subsequently
the stability of motion of a rigid symmetric satellite was analyzed

by means of the same method by Pringle [9] and Likins [10l.



The stability of a rigid satellite with elastically connected

moving parts and possessing zero spin relative to an orbiting frame of

reference was studied by Meirovitch [1] and Nelson and Meirovitech [11].

The mathematical model used in Reference [1] as well as References

L6] to [11] 1led to a mathemsticel formlation consisting of sets of

autonomous differential equations.

A mmber of factors that may have significant influence on the

satellite stability renders the system nonautonomous by introducing

periodic coefficients in the differential equations of motion. Included

in this group are the following:

i.

iii.

ive

Ve

Rigid, unsymmetric satellite with arbitrary spin moving in

a circular orbit.

Rigid, symmetric satellite with arbitrary spin moving in

an elliptic orbit.

Rigid, symmetric satellite with elastically connected

moving parts having arbitrary spin and confined to a circular
orbit.

Rigid satellite in a circular orbit subjected to periodic
torques due to solar pressure.

Rigid satellite in a circular orbit subjected to periodic

torques due to the nonuniformity of the earth atmosphere.

The first problem was studied by Kane and Shippy [12] and the

second one by Kane and Barba [13] using an enalysis based on Floquet's



theory. This analysis involves numerical integration of the linearized
equations of motion for specifiec values of the parameters of the problem.
Stebility is checked only at discrete points in the parameter space and

does not furnish continuous stability diagrams.

1.3 Btatus of Mathematical Methods for Stability Analysis

The problems of attitude motion of satellites lead to systems of
coupled, nonlinear differential equations. For the most part, the
general solution of these eguations is not possible and we shall be
interested in the case in which a stability statement suffices.
Therefore, the analysis consists of determining equilibrium positions
and examining the stability of motion of a system about these equilibrium
positions.

The definitions that will be used for equilibrium position and
for stability at an equilibrium position will be as follows. Given a
system whose essential features are described by n generalized
coordinates and n generalized velocities, Xs5 (i=1,25¢4.52n), an
equilibrium position is said to exist at X; = Cso (i=1,2540.52n),
where c, are constants if these values satisfy the differential equations
of motion. By a suitable coordinate transformation, any equilibrium
position of a mechanical system can be translated to the origin,

X, = = 0 , and this will be assumed to be the case in

l x2 Seee= Xan
further discussion. An equilibrium position will be defined as stable
in the sense of Liapounov [14] if there exist positive numbers e

and T and time to such that



n

2 x> < e (1.1)
1

S

for all motion subsequent to an initial perturbation from the equilibrium
position, where the initial perturbation satisfies

2n

EX?STI at t=1%

30 (1.2)
i=1

0
The majority of solved satellite dynamics problems deal with

autonomous systems. Solutions were obtained by both infinitesimal and

Liapounov analyses. Linearized analyses were used in the early studies

of autonomous systems; fortunately, however, the Liapounov direct method

has more recently been adopted for the stability investigation of auto-

nomous systems. The Liapounov direct method allows one to make conclusive

statements as to the system stability of motion in many critical cases.

One form of the lLiapounov stability theorem states that: If there exists

a differentiable function Vi(xl,xe,...,xgn), known as & Liapounov function,

that satisfies the conditions

a. Vi(xl,xe,..,,XEn) =0 (1.3)

in a definable region surrounding the origin where the equal sign

applies only at the origin (i.e., Vi is positive definite in the

neighborhood of the origin with a relative minimum &t the origin).



2n
S i P (1.0

where dVi/dt is taken along an integral curve then the

equilibrium point x, = 0, (i=1,2,¢..,2n) is stable. The

i
equilibrium is said to be asymptotically stable if ‘dVL/dt

is negative definite¥* (i.e., dVi/dt is negative in the neighbor-

hood of the origin and equai to zero at the origin).

The Hamiltonian function has been used extensively as a Liapounov
function for autonomous systems [1], [9], [10], [11].

Periodic systems are a special class of nonautonomous systems in
vwhich the time dependence appears in the form of periodic coefficients.,
The differential equations for the problems associated with an n-degree-~
of-freedom periodic system may be written in the following form

2n

Yy = 2 bij(t)yj + Yi(yl’yE’""yEn’t)’ (i=1,254..,2n)

j=l (1'5)

where the coefficients bij(t) are periodic with period T and the
functions Yi consist of second and higher order terms in the yi's
multiplied by periodic coefficients with period T .

As with the autonomous systems, the equations are identically

satisfied at the origin so that the origin constitutes an equilibrium

¥ This condition is unnecessarily stringent and the above definition is
valid if dv;/dt is only negative semi-definite (i.e., it can be zero
at points other than the origin) provided the motion is coupled [15][16].



B i

position in the neighborhood of which the nonlinear terms can be
regarded as small, Hence, it is natural to investigate the linearized

equations

{7} = [o(+)1{y} (1.6)

It can be shown that every linear system with periodic coefficients is
reducible by means of a nonsingular transformation with periodic coeffi-
cients to a linear system with constant coefficients [17] and that the
stability characteristics of the system of equations are unchanged by
such transformations. Consequently, it can be shown [18] that a
characteristic equation exists for the periodic system, and that the
linearized equations yield conclusive information about the character
of the equilibrium only when no characteristic number¥* has a real
part that is equal to O. When one or more of the characteristic numbers
has a zero real part we have a critical case in which the non-
linear terms must be considered in order to make conclusive stability
statements. Unfortunately, this appears to be the case that must
be studied in satellite attitude stability problems.

Theorems have been advanced using the Liapounov second or

direct method that are applicable to nonautonomous systems and that

* Note that the characteristic number discussed here can also be expressed
in terms of the natural logarithm of a ‘characteristic mmltiplier" as
discussed in the next chapter.
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would yield conclusive stability information if they could be applied
to the periodic systems. One such form of the Lispounov theorem for
nonasutonomous systems is the following [19]: Given a system characterized

by the differential equations

J.fi = fi(xj’t) ’ (i:J=1:2:°-':2n) (1.7)
which has an equilibrium position at the origin. The equilibrium is
stable if there exists a positive definite function V(x,t) such that
its total derivative V for the differential system, Eq's. (1.7)
is not positive.

To date, no application of the Liapounov method of analysis
to periodic satellite dynamics problem is believed to have been successful.
Some success has been achieved in the application of a method suggested
by Cesari [20] to the linearized equations, using numerical integration
of the equations of motion in conjunction with Floquet's theorem for
specific values of the parameters of the problems. The limitations of

this approach by Kane, et al., [12][13] have been discussed previously.

1.k Review of the Present Investigation

Three separate methods of analysis were developed in the course
of this investigation. Together they yield the desired stability
information about periodic systems of the type being studied. The first

method consists of an adaptation of the Liapouncv direct method into a



form that is suitable for use with periodic systems. A stability
theorenm is presented, the proof of which is included in Append:ix A.

The differencé between the Hamiltonian function and the Hamiltoniasn function
evaluated at an equilibrium position is shown to be a suitable testing
function for use with the stability theorem. The stability theorem may
be used for defining stability in the sense of Liapounov. However, an
alternate use of this theorem is developed with the aid of Floquet's
theorem, by means of which approximate locations of resonance instability
regions may be found when the periodic influence on the system is small,
In addition, this theorem allows certain stability boundaries to be
located that are not readily defined by other methods (Section II).

The other two methods of analysis are developed for the purpose
of describing the regions of resonance instability. One method is based
upon approximate evaluation of an infinite determinant, while the
second is based upon an asymptotic expansion of the equations of motion
in terms of a small parameter.

Although the analysis methods were developed principally for
application to multi-degree~of=-freedom systems of the type encountered
in space dynemics problems, they should also be applicable to other
types of systems. To illustrate the analysis methods, they have been
applied to the Mathieu equation which is a single-degree-of-freedom
equation with a periodic coefficient; this analysis is included in

Appendix B.
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Sections IIT and IV present the analysis of the stability of
motion of spinning rigid satellites under the influence of periodic
disturbances.

In Section III the effect of asymmetry of the spinning body
about the spin axis is studied for a circular orbit. The equations
of motion and energy relations are derived for the system which is
linearized about the equilibrium position. At the equilibrium posi-
tion the spin axis of the satellite is perpendicular to the orbit plane.
When the nonlinear terms are neglected, the spin motion becomes un-
coupled from other satellite attitude motions and the spin rate of
the asymmetric body is found to be an explicit time dependent, periodic
motion., This time dependent motion appears in the linearized equations
of motion for the spin axis as periodic coefficients. Consequently, a
stability analysis using the methods of Section 1II is performed. The
limits of stability are defined and compared with the previous linear-
ized analysis of this case [12].

Section IV presents an analysis of the stability of motion of a
rigid, symmetrical, spinning body in an elliptical orbit. Periodic
coefficients appear in the equations of motion by virtue of the periodic
orbital motion of the center of mass. An equilibrium position is found
in which the spin axis is perpendicular to the orbit plane. The stability
of this nonlinear system is investigated in the neighborhood of this‘equili-

brium position, using the Liapounov - and asymptotic - types of analyses of



E«:

Section II. Consideration is given to the linearized system as well

as the nonlinear system, The analysis of the linearized system can

be directly compared with a previous investigation, Reference [13],
which checked the stability of the linearized system at isolated points.
The comparison shows reasonable agreement. In addition to the instabil-
ity regions predicted by thé linearized system, new instability regions
associated with the nonlinear terms are obtained; the occurrence of
nonlinear "stiffening" of the system tending to limit the amplitude

of resonance oscillation is noted (see p. 171). Thus, the present.inves-
tigation not only includes continuous stablility diagrams which could not
be obtalned by previous methods but also extends the analysis into the

nonlinear regime where no previous gtability investigations had been

performed.
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SECTION IT

METHODS OF STABILITY ANALYSIS OF PEﬁIODIC SYSTEMS

2.1 Liapounov=Type Stability Analysis

The conclusive stability statement that can be made by means of
the Liapounov type of analysis on autonomous systems would be of great
value if it could be made in connection with multi-degree-of-f reedom
conservative* systems with periodic coefficients. Such an approach
may also be useful in locating regions of instability in linearized
systems with periodic coefficients. The periodic terms may enter the
equations by virtue of a periodically varying potential function or by
means of assumed periodic behavior of one, or more, coordinate that is
not subject to the stability investigation but eppears in the form of
known time-dependent coefficients.

We will assume an arbitrary n-degree~of-freedom system and will
utilize the definitions of equilibrium position and stability as given
in Section I. It should be noted that the equilibrium position may be
defined in terms of a restricted number of coordinates (for exemple the

attitude stability problem of a spinning satellite may be defined in

¥*Conservative is used here in the sense that the external forces are

derivable from a potential function that is independent of the velocities

even though the potential function and the resulting forces may be
time-dependent.



terms of the position of the spin axis as in the case of the constrained
system of Section III) and other coordinates such as the orbit parameters
or spin angle may appear as time-dependent coefficients.

The Hamiltonian function has been widely used as a testing function
in conjunction with the Liapounov stability analyses of autonomous
mechanical systems. However, it has not been used in the case of
systems with periodic coefficients. To discover why this had been the
case,llet us consider an unconstrained conservative system with nonrotating
coordinates. The usual forms of the Liapounov theorem state [19]
that the motion in the neighborhood of an equilibrium position will be
stable if a function of the coordinates and time can be found which is
positive definite in the neighborhood of the equilibrium and has a
negative or zero time derivative. The total energy is a suitable
Liapounov function in the case of an unconstrained conservative system
with nonrotating coordinates problem, so the Liapounov theoren can be
seen to reguire that the total energy have a relative minimum at the
equilibfium position and that energy is either dissipated or unchanged
during any small motions near the equilibrium. This latter requirement
appears to be too stringent in the case of systems with periodic
coefficients, since intuition tells us that a stable equilibrium could
exist such that energy could flow in and out of the system during small
motions near the equilibrium, as long as the net energy addition after
a period of time is not a cumulative effect. Consequently, the following

stability theorem is suggested.

15
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2.,1.1 Stability Theorem

Given a system described by the differentisl equations

is = Xs(xlaxe,...,x2n,t), (s = 1,2,...,2n) (2.1)

l=x2="'=x2n=o’

then the perturbed motion about this equilibrium position is said to be

for which an equilibrium position, E, exists at x
stable if a continuous function V can be found such that

a, V(xl,xe,...,nen,t) is positive definite in the neighborhood

of E, zeroat E , and

t
av 2 2 2
b. ft 5 a4t < M(xlo S x2n, O) (2.2)
0

for motion subsequent to t = to, in which M 1s a finite,

positive constant and xlo,xeo,...,xen,o are initial small

displacements at t = to.

Proof of the preceding theorem is given in Appendix A, Similar
theorems giving the conditions for instability or asymptotic stability
may be developed in the same manner, It should be noted that the
preceding stability theorem gives conditions that are sufficient for
concluding that a given motion is stable but does not give the necessary
conditions, Consequently, stable motions may exist which would not

meet the requirements of this theorem.



To make use of the stability theorem it is necessary to select a
testing function which can have a relative minimum at an equilibrium
position and for which a meaningful value of the integral, Eq. (2.2),
can be obtained., The Hamil#pnian function will be investigated for this
purpose based on physical reasoning. This physical reasoning will be
applied to a nonrotating coordinate system before applying it to rotating

systens.

2.1.,2 Testing Function. Nonrotating Coordinates.

First let us introduce the notation:

KE = kinetic energy

)
ea
I

potential energy

=
]

KE - PE = Lagrangian function

generalized coordinate

generalized velocity

S
i

generalized momentum

He

O J
e
[}

generalized conservative force

By definition, the generalized momentum and generalized conservative

are related to the Lagrangian by

Pi = g%i s Qi = -g—g—; ’(i=1,2,toc’n) (2'3)

17



Furthermore, we have the Lagrange's equations of motion for a conservative

system

oL _ oL _ .

dt aq aq s Py =Q »(1=1,2;...,n) (2.4)

vwhich states that the time rate of change of the generalized momentum
is equal to the generalized conservative force. The definition of the

Hamiltonian is
H(q,p,t) = Epiéi - L(a,4,t) (2.5)
i

where the first of Eg's. (2.3) have been used to eliminate qi from

H . Taking the time derivative of both sides of Eq. (2.5) one obtains

. daq,
E{aq dt ap dt } 2{ 1dtl aq d:l'g%

(2.6)

which gives the following canonical equations

oH . oH  _

‘gi =" Pi == Qi 2 api - qi (2°7)
and also

g_lé - - -S—fg (2.8)

18



One can also note that all but the last term on the right side of

Eq. (2.6) add to zero by use of Lagrange's equations of motion so

that
dd OH oL
at ot - "ot (2.9)

When a nonrotating coordinate system is used to describe a
mechanical system subjected to conservative external forces, the above
general relations take on special forms such that the kinetic emergy
is quadratic in the wvelocities, the potential energy is a function of
only the spatial coordinates, the total energy (KE + PE) is equal to the
Hamiltonian, and the geueralized force and momentum are equal to the
linear force and momentum.

In the absence of explicit time dependence in the Hamiltonian,
the total energy is constant. With time dependence the total energy
changes in accordance with Eq. (2.9).

Now we can consider the mechanisms through which an instability
exists in the neighborhood of an equilibrium position E (the origin).
If we consider motion near E in which the energy level is larger by an
amount AH than the energy level at E , we see that an instability
could exist due to exchange of energy between XE and FE in one or
more coordinates. But for a mechanicel system, KE i1is positive definite
(i.ee, KE dincreases as the Py depart from zero). So, if the motion

is not to diverge from the neighborhood of the equilibrium it is only

19



necessary that the potential energy increases as 9 inerease. More

specifically, along any path diverging from E , sﬁch as the path
T = alqlél + a2q2é2 + eee + anqnén (2.10)
where al,az,f..,an are arbitrary positive constants, we require that
VEE e T=VH eT==Q+7>0 (2.11)
This essentially states that the generalized force Qi must act towards
the equilibrium. This is equivalent to the requirement that FE

(and H) have a relative minimum in the neighborhood of the origin. A

key element in the above discussion is that if H is time dependent,

it is reasonable to require that H be positive definite for all time
énd, thus, would fulfill the first stability requirement of the proposed
theorem.

Another possible mechanism for instability exists, even if H
is positive definite in the neighborhood of E . It is possible that the
energy of the system will build up over a period of time such that
the integral of the time derivative of the difference between the
energy of the motion and the energy at the equilibrium position increases

without bound
t
d
I____Jt .d_t(H-HE)dt.. © as t - o (2.12)
0



where Hﬁ is the Hamiltonian evaluated at the equilibrium position and
it is a function which depends on t only. If this integral increases
without bound, then unbounded values of one or more of the g; or Qi
would be expected. Conversely, if this integral can be shown to be
bounded in accordance with the second requirement of the stability
theorem, the motion will be bounded aﬁd of arbitrarily small magnitude,
depending upon the initial disturbance that is assumed.

No criterion is known to exist for the selection of an optimum
testing function for the purpose of a Liépounov type of stability
analysis. However, the above arguments give a physical interpretation
of the requirements on the Hamiltonian for a stable equilibrium to
exist in a nonautonomous system and shows the relationship between
these requirements and those of the proposed stebility theorem.
Consequently, H - HE appears as a likely choice for use as a testing

Tunction in conjunction with the proposed theorem.

2.1.3 Testing Function. Rotating Coordinates.

In this case the Hamiltonian can be shown to be
H=§dipi--L=KE*+U (2.13)
i

where KE¥ is the portion of the kinetic energy expression that is

quadratic in the velocities and U is the dynamic potential given by

U=PFE = ¥ (2.1k%)
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in which % is the portion of the kinetic energy expression 'tha.t. does
not depend on the velocity. The discussion of the preceding section
is equally valid for the rotating coordinate system, excépt that we
mist use XE¥ and U dinstead of KE and FE , respectively. It
should be noted that the Hamiltonian is no longer equal to the total
energy of the system and the generalized force and momentum are not,
in general, equal to the linear force and momentum. Once again the
function V=H - I-IE appears to be a reasonable testing function for

use with the proposed stability theorem.

2.1.4 Application of the Stability Theorem.

In many cases, the parameters of the problem can be specified so
as to satisfy the first condition of the stability theorem, namely that
the testing function V be positive definite in the neighborhood of the
equilibrium position, at all times., This may be done in a direct way
by proving that the Hessian matrix associated with V is positive definite
for all times [1]. , or alternately, by means of comparison testing
function [21], The latter consists of assuming that it is possible to
find a positive definite function W(xl,x2,... ,x2 n) which does not

depend exjplicitly on t and such that

V(xl,xz,...,nén,t) = W(xl,xe,...,xzn) (2.15)



When the time dependence of V dis periodic one may regard the
function V = ¢ as representing & pulsating 2n-dimensional surface,
When V is positive definite in the neighborhood of E , the function

= ¢ becomes a 2n-dimensional closed surface which changes in shape
and size as a function of time.

In order to check the second stebility requirement we must obtain

information about the integral

t t
av oV
I= It St at = jt St dt (2.16)
0 0

In general, V will have the form of a series of terms consisting of a

periodic function multiplied by second, or higher, power functions of

the generalized coordinates a and generalized velocities qi .

Consequently, we must at least know the form of the solution, ay and

4; » in order to determine the behavior of the integral, Eq. (2.16).
For some types of problems it is possible to state that the

solution is of the form

. iY.t
a =) fgl) (£) e (2.27)
3

(

where fjl)(t) are nonperiodic functions of time (or constants) and

Yj are real numbersX Equation (2.16) can then be re-expressed in the

form of terms such as

*The i appearing in the exponential is =1 » not an index,
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t io
1£’t
J;O gy{t) e * cos wt dat (2.18)

vhere o is the frequency of one of the periodic texrms in the Hamiltonian.

In the case of undamped systems in which the periodic terms in the
Hamiltonian are small (which is certainly the case in many satellite
dynamics problems) the g,(t) will be constant or slowly varying
functions of time and the integral (2.18) will behave like the pro-
duct of trigonometrice functions and will diverge only if one of the
0£ becomes equal to one of the frequencies in the periodic forcing
function. This will be investigated further in the case of each example.
We will call this a resonance oscillation.

Estimation of the frequencies of oscillation of the system will
depend on the particular system under consideration. In some cases
it could be accomplished by means of Flodquet's theorem or an asymptotic
expansion in terms of a small parameter.

The conclusions which are sppropriate for the types of perturbed
motion that are under study can be stated as a corollary to the stebility

theorem:

Corollary - An undamped system subjected to conservative forces and
characterized by differential equations and a Hamiltonian function
with periodic coefficients will admit stable motion in the neighborhood
of an equilibrium position if

8. the Hamiltonian function has a relative minimm at the

equilibrium position and



b. no resonance occurs between the motion in the neighborhood
of the equilibrium and the periodic coefficients in the
Hamiltonian.
In some cases, such as the examples trested here, it may be desirable
to apply the stability theorem to a linearized system, in which case
the statement concerning the é*ba.'bility of motion should be regarded
as pertinent to the small motion only. Hence, in this case, stability
will occur in the indicated regions of the parameter space only if the

linear terms dominate the motion.
2.2 Analysis Based on an Infinite Determinant

A method similar to that employed by Bolotin [22] has been
adapted for use in defining the regions of resonance of a linear system.
The present study represents a substantial advance in the use of this
type of analysis, including its application to a system of second order
equations which contain the velocity terms that are typical of gyroscopic
motions. This method has been applied to the problem of the spinning,

unsymmetrical body.
2.2.1 Discussion of the Motion of Linear, Periodic Systems.

According to Floguet's thgorem, a system of n second order
linear differentlial equations with periodic coefficients possess 2n

linearly independent solutions¥* of the form

*
Discrete characteristic multipliers are assumed.
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(=49} - {f('j)} &/t , (351525400 ,2n) (2.19)

where the féJ) are periodic functions with period T and the Pj

are called the characteristic multipliers. Note that
np=4n lp l + 1 arg P (2.20)

The motion about the identically zero solution will be stable
if no characteristic multiplier has an gbsolute value that is greater
than one. The motion will be asymptotically steble if all character-
istic multipliers have absolute values that are less than one and will
‘be unstable if any characteristic multiplier has an absolute value
that is greater than one,

The system under consideration is linear with periodic
coefficients and has a Hamiltonian function from which the equations

of motion may be written in canonical form, i.e.

dp,; K day

at = oq ’ t =%; ,(i=l,2,..,,n) (2.21)

He

A theorem due to Liapounov [21] states that for such a case the
characteristic mltipliers occur in reciprocal pairs. Consequently,

if Pj is a characteristic mmltiplier, then 1/Dj is also a characteris-
tic mltiplier. Also the characteristic multipliers for the system

under consideration occur in complex conjugate pairs.¥*

*
This has yet to be shown for the system under study.
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A pair of particular solutions corresponding to reciprocal

rocts may be written

(@) o {0} M E

(2.22)
{x(k)} } {f(k)f e—(t/T)ﬂn 3
The region of parameter space in which pj is real and different from
+ 1 1is clearly the region of unstable motion, since one of the reciprocal
characteristic multipliers mst be greater than one. Upon further
variation of the parameters of the problem, the roots will become complex

conjugate pairs

. -1
pj =a+ib , Pk = pj =a - ib (2.23)

and since pjpk = 1 ‘they will have an absolute value equal to one.

This then indicates that the region of complex P, is the region of

J
bounded motion. Since the characteristic multipliers are continuous
functions of the parameters of the problem, the boundaries of the

regions of stability will be given by the cases when pairs of roots,

P=1 or P==-1, occure But we can use Floquet's theorem to show

that

(e} - {fDem) oL TR R L)

o, (£ (w)}e /T P (2.24)
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which, on the boundaries of the regions of instability, gives us

po=1 5, x(eem) = x(9)(x)

Cate

(2.25)
P, =al R X(j)(t'l‘T) = -X('j)(t)

The first of BEqQ's. (2.25) tells us that a motion which is periodic
with period T will be admitted on a boundery where P =1 . The second
of Eq's. (2.25) indicates that a motion that is periodic with period
27 willl be admitted on a boundary where £ = - 1. In addition, any
distinct instability region (region of real characteristic multipliers)
must be bounded by a single value of P (i.ee, P=1 or p==1).

This is seen to be true because, in order for the values p =1 and
p==21 to occur on different boundaries of a given instability region,
it would be necessary that Py = 0 and 1/pj = ® at some location
within the instability region, since p is a continuous function of the
parameters of the system. But this is not possible. This leads to the

formulation of a stability theorem.

2.2.2 Stability Theorem for Linear Systems.

Theorem
Periodic solutions with period T or 2T are admitted
on the boundaries between regions of stability and regions of

instability in canonical systems which are described by systems



of linear differential equations with periodic coefficients.
Solutions of the same period bound each distinct region of

instability.

2.2.3 General Application of the Stability Theorem.

Application of the preceding stability theorem consists of
investigations to define the locations in parameter space along which
solutions with period T or 2T can exist. Separate Fourier expansions

with period T and 2T may be made such that for period T we have

{x} = 2 {an} el 2nrtt/ T =§ {bn} sin onnt/T
n==> n=l
+ z {cn} cos onmt/T (2.26)
n=0

and for period 2T we can write

{x} = 2 {a } ol nmt/T E {v } sin nnt/T

== n=1

+ § {cn] cos nit/T (2.27)

n=0
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Either the exponential or trigonometric form of one of the above
solutions may be substituted into the differential equations and the
resulting coefficients of equal harmonics may be equated, givihng an
infinite system of linear equations in terms of an infinite number of
coefficients. For a nontrivial solution to exist, the determinant of
the coefficients must be zero. Evaluation of the infinite determinant
has been possible in the case of Hill's equation [23], and this process
has been used further by Mettler [24]. In both cases, the eguations
being studied are of the second order, and do not include velocity terms.
The same technigues do not appear applicable to systems with gyroscopic
terms.

In some cases, a reasonable gpproximation may be achieved by
taking only the first few terms of the periodic expansion, Eq. (2.26) or
Eq. (2.27). This approach will be taken in the following problem solu-

tions.

2.3 Analysis Based on Asymptotic Expansion in Terms of a Small

Parameter

A method of analysis which is similar to that originated by
Kryloff and Bogoliuboff [25] and further developed by Bogoliuboff and
Mitropolski [26] has been employed. In contrast with these authors,

however, the method used in this case involves an expansion of the



equations of motion using assumed simultaneous resonance and nonresonence
solutions. As a result, one can define unstable regions of motion of a
multi-degree-of-freedom system including those regions in which resonance
occurs between periodic terms and the sum or difference of natural
frequencies. Systems involving gyroscopic terms have not been discussed
in References [25] or [26) and no previous application of this type
of asymptotic expansion in the treatment of satellite dynamics stability
problems is known.

Perturbation solutions in general involve assumption of the
form of the solution of a perturbed system of equations as a power
serles in a small parameter which appears in the equation of motion.
Substitution of this assumed solution into the eguation of motion then
allows recursive solution for the coefficient of each power of the small
parameter, so that the equations of motion are satisfied to any desired
accuracy (i.e. any desired power of the small parameter). The absence
of secular terms which diverge as t — o and the ability to evaluate the
coefficients is frequently accepted as evidence that the assumed form

of solution is satisfactory.

2.3.1 Methods of Kryloff, Bogoliuboff, and Mitropolski

The methods employed by Kryloff, Bogoliuboff, and Mitropolski

(KBM) are most frequently applied to a single-degree-of-freedom system

31



with equation of motion of the form
o o .
X+ 0wx=¢ P(x,x,t) (2.28)

in which € is a small parameter and f(x,i,t) is an arbitrary periodic
function of time and may be either linear or nonlinear in x and x. In

the limit, as € approaches zero, the motion is periodic and of the form
x =a cos (wt + &) (2.29)

where a, W, and § are constants. We may look upon the left side of
Eq. (2.28) as the unperturbed equation and the terms on the right will
be regarded as a perturbation. The assumption is then made that, for
small ¢, the amplitude and phase angle are no longer constant but

functions of € and time may he expressed as

da 2 3
3T €a +ea,te a3 S

(2.30)

as 2 3
Frs € 61 + € 62 + € 53 + e

and that the solution contains additional terms of frequency different

from that of Eq. (2.29) so as to satisfy the differential equation. The



resulting assumed solution is
2
x =a cos (wt + §) + upe+ usE + o (2.31)

The assumed solution is substituted into the equations of motion, the
coefficient of every power of ¢ is set equal to zero, and the resulting
equations are solved in succession by harmonic balance. By this process
the differential equation is satisfied to any desired power of e.

The KBM procedure has also been applied satisfactorily to multi-

degree-of-freedom systems of the form

n
X, + E: e, X, = fi(e,xl, il, X, i2, vee , X

1J J 2 xn’ t) F)

n

(2.32)

(i=1,2, ... n)

where the ciJ are constants and the fi can be expressed as power series
in € in which the time dependence appears as periodic coefficients.
However, the assumed forms of solution in this case are not satisfactory
for the type of problem under study in the present research.

Extensive use has been made of the asymptotic methods in the
study of oscillations since the initial work by Kryloff and Bogoliuboff
in 1937 [25]. However, no mathematical foundation was presented for

these methods until 1955, when Bogoliuboff and Mitropolski [26] showed

that the difference between the true solution and the solution obtained by
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asymptotic methods could be made arbitrarily small for systems of
nonlinear equations under rather general conditions, and that the
properties of the exact solution are given by the properties of the
asymptotic solution under much less general conditions.

The type of problems currently under study are not among those
for which the mathematical foundations have been shown by Bogoliuboff
and Mitropolski. Furthermore, the present research does not seek to
provide these mathematical justifications. Instead, the present effort
has been concentrated on finding forms of asymptotic solutions which
are capable of satisfying the differential equatlions of the specific
problems being studied to any given accuracy in terms of a small

parameter.

2.3.2 Applicetion to Rigid Body Dynamics

Some problems of rigid body dynamics may be expressed in the

form

o«
Yy . . n
©) * 818 + B9y = 2 © Ty (8 6y 835 8, 1)

(2.33)
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where in the limit, as € approaches zero, the solution becomes of

the form

6, = a cos (wlt + 61) + Db cos (w2t + 62)

(2.34)

(]
1l

a)\l sn.g (wlt + 61) + blg sin (wet + 62)

in which wl and ub are the natural frequencies of the unperturbed
system, a and b are arbitrary amplitudes, 61 and 62 are arbitrary
phase angles, and Kl and Xe are constants that are obtained in the
process of solving the unperturbed equations of motion. We may assume
in general that the functions appearing on the right side of Eq's.
(2.33) can be expressed in terms of products of periodic funections

of period T, and powers of the coordinates and velocities, 6 )

Y "2’
él’ and 52.

Application of the KBM type of asymptotic solution will depend
upon the particular problem being studied and will be spplied in
different manners to the same problem in order to describe different
oscillatory phenomens. Specifically, one can distinguish two signifi
cantly different types of motion in each case: resonant and non-
resonant. Resonant motion will be shown to take place when wl or w2
is sufficiently close to a frequency occuring on the right side
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of Eq's (2.33).

To investigate nonresonance motion we may inspect solutions

of the form
8, =a, cos (Y.t + &6,) +a, cos (Y.t + 5.) + eu + &2 +
1% 1 1 2 2 2 11 b - I
(2.35)
. 2
= x ' i .
6, = &)\, sin (ilt + 61) + a212 sin (w2t + 62) euy, foEu,, e

in which 11, Rg, §_, and 62 may be expressed as power series in ¢,

l,
the amplitudes 8y and a, are functions of time such as is given by

the first of Eq's (2.30), and the frequencies are given by

It
=
+
™
>4
+
()
>
-+

! 1 11 12
(2.36)

Yo =W, + o€ A2

Substitution into the differential equations, Eq's (2.33) and

solution for the coefficients shows that 2y 85 6§, and 62 are

l)
arbitrary constants, in the nonresonant case, and are independent of «=.
The values if Al’ Kz, wl, and &2 are also constants, but are expressed

in terms of power series in €. Thus it is seen that in the nonresonant

case, the perturbations cause a shift in the frequency of oscillation



and in the relative amplitudes of el and 62 oscillations, and

introduce additional terms given by Ujqr Uyps Upgs oo which
include constant amplitude oscillations of frequency
Lo, +mu + 28 : (2.37)
1l - 2—- T ‘

where £, m, and n are integers. Consequently the nonresonance
oscillations are bounded, multifrequency oscillations and are of
arbitrarily small amplitude depending upon the assumed initial
emplitudes given by a, and a,. Therefore, the region of nonresonant
oscillation is a region of stable motion.

Resonant oscillation can occur when one of the natural fre-
quencies (for example wl) is sufficiently close to a frequency given

by Eq. (2.36). Defining the resonant frequency as ® g’ & solution

of the following form is possible

6, = a cos (wrest + 61) + b cos (w2t + 62) +upge+ u12¢2 .
(2.38)
6, = a\) sin (wrest + 61) + bA, cos (ubt + 62) + Uy, e
ru e+ ...
22

Substitution into the differential equations of motion can be made
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treating the amplitude "a" as & function of time and writing

2
O =9t b e+ &, € ... (2.39)

The result is that the nonresonant part of the oscillation yields
the same type of stable oscillatory terms as before. The resonant
part of the solution in general has a time dependent amplitude, a,
and may be unstable.
Our interest is in describing the size of the unstable resonance

region. Consequently we wish to determine the range of the parameters

l, Ag’

time dependent. But in the previous section we found that the bound-

A ... of Eq. (2.39) for which the amplitude, a, exists and is
aries of this resonance region admitted constant amplitude oscillatory
motion in the case of linear systems. This must also be the case
for nonlinear systems, if the solution is to be an analytic function of
time and the parameters of the problem and the solution is not unstable
everywhere. Consequently in these cases we may locate the boundaries
of the instability regions as those values of Al, AE’ etc., for which
the equations of motion are satisfied when a is assumed to be a con-
stant. This is the approach assumed in the subsequent problem solutions.
Apparent advantages of the asymptotic method include its
applicability to nonlinear systems and its abllity to define stability
boundaries where the sum or difference of the natural frequencies

is in resonance with a parametric excitation.



SECTION IIX

SPINNING, UNSYMMETRICAL SATELLITE IN A

CIRCULAR ORBIT

The present research is concerned with the problem of stability
of motion of a spinning, unsymmetrical, rigid satellite in a circular
orbit. When the satellite possesses rotational motion relative to an
orbiting frame of reference the problem formulation involves periodic
coefficients.

Previous work [1],[11]) has shown that for rigid bodies there is
no coupling between the orbital motion of the center of mass of the body

and the attitude motion of the body about the center of mass. This

assumption, referred to as orbital constraints, will be used in the present

study.

Particular emphasis will be placed upon the case in which the
body is nearly, but not exactly, symmetrical with respect to the spin
axis. It is felt that this is a case of great interest since, for
spin-stabilized satellites, a practical satellite system would be made
nearly symmetrical with respect to the spin axis to minimize the periodic

excitations caused by gravitational torques.

Sel Coordinate Systems

An orbital frame of reference with its origin at the satellite

center of mass and its orientation as shown in Figure 3.l1a 1is chosen.
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FIG. 3.1a
THE SATELLITE AND THE ORBITAL AXES

FIG. 3.1b
COORDINATE SYSTEMS AND ANGUILAR VELOCITIES
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Axis a is along a radial line from the center of force (center of the
earth) to the center of the satellite, axis b along the orbit path,
and axis c¢ perpendicular to axes a and b . The orbit angular
velocity,.denoted by ‘6 » is related to the constant K , which is the
product of the universal gravitational constant times the earth's mass,
and the orbit radius R, by Qg = K/Rg . Hence a, b, ¢ forms an
orbiting frame of reference. The orientation of the satellite relative
to the a, b, c reference system is obtained by three successive rotations
92, el, and # as shown in Figure 3,1b.
The 2z axis is taken as the spin axis and the mess moments of
inertia ebout the axes x, y and z are denoted by A, B and C, respectively.
The direction cosines between the x, y, z axes and the a, b, ¢

axes may be written in terms of the following matrix equation:

x xa %xb %xc &
= L £ £

y ya “yb ye P

z 4 & c

za, zb ze

c92c¢ - selsegsﬁ celsﬁ -seecﬁ - c92sels¢ a
= -c925¢ - selseecﬂ celcﬂ segsﬁ - cezselcﬁ b
seecel sel c92c9l c

(3.1)
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where c¢O,. = cos 62 s 86, = sin 61 s ete. The angular velocities about

2 1
the x, y, and z axes may be written

Q =Q (-segcﬂ - cezselsﬂ) + 0,c6,50 = 6,cf
Qy = Q (seesﬂ - c62selcﬂ) + 6,0 cf + 6,50 (3.2)

Q

\ L] *
Q (ceecel) + 6,56, + ¢

The following dimensionless quantities will be introduced:

r=2C/A , e=(B -a)r ,
(3.3)
o = ﬂ/ﬂo s al = wO/QO

where é is the instantaneous spin rate and is the average spin

%
rate. Note that € is a measure of the asymmetry of the body with
respect to the spin axis and will generally be a small number as

mentioned previously.

3.2 Energy Expressions

The kinetic and potential energy expressions may be written as

follows

1, 2o, lap
KE =3 A0 +3BQ +3CQ

!Pﬁ

PE = - E [(c +B -2+ (CH+aA- B)ﬂﬁa +(A+B- C)ﬂfa]

R

o w

(3.1)



——E i

3.3 The Equations of Motion

The Lagrangian function, L = KE - PE, may be used in conjunction
with the Lagrangian formulation to derive the differential equations

of motion. For a conservative system, Lagrange's equations are

%(%;;i.) %- =0, (i=1,25.e05n) (3.5)

where n is the degree of freedom of the system. Equations (3.5)

lead to
. ° D N 2 . 2
bl + 60,06, + 6556,c0; = O (8,00,870; = §,00,¢70;)
2 2 e 2 e 2 2
- Qjce,s6,c6, - r[ﬂezcel + 6756,c0, + Qoezcee(c 6, = s el)

. 22 2 2 = 2
Qoﬂcezsel - ro 62selcel] + 3(1-r)Qos egselcel + e[Gls @

. . o oo o e o 2 - 2
+ 20,0sfch + eecelsﬂcﬂ - elezselsﬂcﬁ + eeﬂcel(c g - s°6)

bt 2 . .
+ Qoez(cezs @ + s6 selsﬁcﬁ) + 1§56 s0ch Q. 0.co,.co.sfch

2 o1 2771
. 2 2 ° o 2 2
- Qoﬂceesel(c g - s°0) + eleaselsﬁcﬁ + é2 56,¢6,c"8
+ Q6. 56,.50,50ch = .6 _c6 529 c2¢+Qé cb co sﬂc¢+Qé (L c26 caﬂ
o27271 0272 1 ol1l7271 o272 1
2 2 2 2
+ Qg(hsezceecelsﬂcﬂ - ¢70,80,c0,c7F + 3570,56,c6,c g)l=0

b3
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2

+

- - 2 . 2 .
N 20156106, = QO(-GESGQSelcel + 6,c6,¢70, = 0,060,870, + 0,20,

[ ] 2 2 .. oo
0,.s0,s6.co.) = czo(s92c92 - seacees el) + r[ﬂsel + ;aelce

2211) 1

L ] e 2 [ ] 2
+ Qo(-92562561091 + 6,060,760, = Glcegs 61

- 5 . .
925 91 + 2626159 _cel

. . 2 . 2 2
#5606, + 9,56,56,c6, + Q2,56 ,c6 ¢ el)] - 3(1-r) ﬁbseece2c 6,

- *2 s e 2 2 S-S~
e[elcelsﬁcﬂ - 6786,s0ch + Glﬂcel(c g - s@) + 6,7 0,cp (3.6)

. 2 LI 2 . L]
26261391c610 g - 262¢c ©,s8ch + Qo( elselseesﬁcﬁ + 6,0, 6, s0ch

. 2 . 2 . 2 ° 2. 2
ﬁcelsegc g - ﬁcelsegs g + Ggsezselcelc g - elceec elc 7}

. 2, 2 . : 2 A
elcegs Glc g + 2¢c62s9 celsﬂcﬁ - 6 cezs g - egceacelsﬂcﬁ

1 1

6,56 s6,s0cf - 6,.86..56.ch ceﬂ) - hﬂg(s92c9252¢ + 5%

1595 58801204 80, sdcy

2

2
c 92sels!25c¢ - se2c625

2, 2
6, c g)l=0
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+
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3.k Equilibrium Positions. The Linearized Equations of Motion

Inspection of the differentisl equations of motion, Eq's. (3.6),
shows that an equilibrium position exists when 61 = él = 92 = é2 = #
=0 and ¢ = nx/2 . This is the equilibrium position studied by
De Bra and Delp [6] in which the unsymmetrical rigid body has s position
that is fixed with respect to an orbiting frame of reference. The
corresponding equilibrium position was studied by Nelson and Meirovitch [11]
Tor the case of a rigid satellite with elastically connected_moving
parts. We are now interested in the case in which the satellite has a
spinning motion relative to the orbiting frame of reference so that
g and é are not constant. However, one notices that by linearizing

Eg's. (3.6) the equation for the coordinate @ becomes uncoupled;

hence one can solve for @ independently.
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In view of the above conclusions, we wish to define an equilibrium

position 6, = 6, =0 . We note that el and 6, define the attitude

1 2 2
of the spin axis relative to the orbiting frame of reference and
91 = 62 = 0 corresponds to the position in which the spin axis is
perpendicular to the orbit plane.

The equations of motion, Eq's.(3.6), can be linearized about

the position el = 92 = 0 . It will also prove convenient to change

the time scale to the nondimensional one defined by

2 2
a d a 2 d
T=Qt,'—-=Q——,———'=Q—— (3.7)
0 at 0 darT dt2 Od'l'2

so that Egs. (3.6) can be written as

o1 4+ eé[2-r(l+oz)] - 6, [1-r(1+a)]

+

¢ {ei(l - £ r)(1+)s20 + 6} [ 2 r(1+)

+

(1 - % r)(1+) ceﬂ:l -6 [ % r(1+)

+

(1 - -15 r)(2+2) c2ﬂ] + o (1 - -é— r)(hd-a/)sa’ﬁ} =0



—

[0»]
Pz
]

o1 Lo-r(1+x)] - ez[h-r(h+a)] (3.8)

+ e {ei [- 2 r(12) + (1 - % r)(140) cez]

X L
e} (1 - 5 r)(14+x) s28 + 6, (1 5 r)(1+x) s2p

-6, [ (k) = (1 -2 r)(he) c20] } = 0

2
ﬁ!l +2

B Im

s20 = O

vhere primes indicate differentiations with respect to T .

3¢5 The Spinning Motion

One notices from the third of Eq's.(3.8) that, for motion in the

neighborhood of 91 = 6, =0, the spinning motion is independent of the

2

coordinates 61 and 62 « One can attempt a solution for # in terms

of a power series in e = (B-A)/A as follows

ﬁ = (Dot + €¢l(‘t) + 62g2(t) + eoe (3.9)

from which it follows immediately that

o =

L € BT + egﬂé(T) + oaee (3.10)

b7



L8

Substituting the above into the third of Eq's. (3.8) and equating terms
of equal powers of € to zero, we obtain a sequence of ordinary
differential equations. The sequential solution of these differential

equations allows one to write

a+e—l—caw'l' +c-:2——-9—clm‘1'

R
1

1 hray ©1 PRCE IR
+ &3 [E%%é (c6o:l'r -5 cawl’f)] + aee
c28 = e T + € [gi-f (cleyT = 1) ] (3.11)
+ € [ —2-‘;2@{ (c6ozl'r - cealT)] + ees
528 = 52T + ¢ —8-3;% slk.vl'r
+ €2 [ 2—‘9'2—); (356011'1' - 55%17)] +oese
S6r ey




An alternate approach that will also prove useful results from

noting that the third of Eg's. (3.8) can be integrated once to yield

. 1/2
g = [1 + 3 £ cesa] (3.12)
0 2 2
o
1
3.6 The Hamiltonian Function

l=92=0.

In this neighborhood, as can be seen from the third of Eq's. (3.8),

Our interest is in the motion about the point €

the coordinate @ can be considered as an explicit function of time.
One can conceive of a constrained system which is a system identical
with the system under consideration but with the ¢ coordinate a known
function of time, namely the solution of the third of Eg's. (3.8).

When 91 and 62

accordance with the complete, nonlinear equations which indicates that

are not small, the motion of this system is not in

constraint forces must be added. However, as 91 and 92 epproach

zero, the terms coupling the # motion with the Ol and 62 motions

approach zero and the constraint forces approach zero. As a result of
this assumption, one can devise a Hamiltonian function containing

91 and 6 o
This Hamiltonian is consistent only with the linearized equations and

as varigbles and @ as an explicit function of time.

mist be used only when 61 and 62 are small, The Hamiltonian in

question can be written as

k9



>0

L .y . OL_ ., 1 2{ 2 2 2,2
H"b——eiel"'ge_éQQ L=35AQ Ay (1+es rz)+e'2 (e 0,

2 2 2 2

+ rs"0, + € cO,c B) + € 6163 cb,s20 + L= r(a+celc62)
2 2 2 2 2, - 2

- 870, = 0,570, + 3(r-1)s 6¢ 911 + € [3(c925ﬁ + selsezcﬂ)

- (86,59 - c0,50,c0)°] | (3.13)

2 21 °

3.7 Application of the Iiapounov Type Analysis to the Spinning,

Unsymmetrical Satellite in a Circular Orbit

Application of the proposed theorem to the problem of the
spinning, unsymmetrical, rigid satellite moving in a circular orbit will
now be undertaken. To this end the assumption is made that § is an
explicit function of t so that one can use the Hamiltonian function
as given by Eqe (3.13). The Hamiltonian function evaluated at the
equilibrium position, 6. = 92 = 61 = eé =0, is

1

Hy = % A Qg [- r(1+)? + 3¢ s°7] (3.1%4)

so that the testing function can be written as




: 1 2 2 2 2,2 2 2 2
V=H-H; =5AQ] {9'1 (1+es"@) + ey (c 6, + rs"6; + ecO e g)
+ e 016} co, s20 + [r(1-c20.c%0, ) + 2ra(i-co.co,)
12 771 1 2 1772
2 2 2 2 2
- 579, =~ 0,576, + 3(r-1)s Qec 911 + € [3(c625ﬂ
+ s0.56 cﬁ)2 - 352ﬂ - (56,58 - cO.s6 cﬂ)2] } (3.15)
1772 2 2771 °

Recelling that V = KE¥ + U , where KBE¥ includes the terms that are
quadratic in the velocities and is a positive definite function in the
neighborhood of the equilibrium position E , the dynamic potential,

U, can be written in the form

1
2

2 2 2 2
c 62) + 2ro (1-celc92) - 556, = c"6,5"0

2 2
A Q0 [r(1-c“6 558,

1

2

+

2 2 2
3(r-1)s 92c 91 + 3e(c925ﬂ + selsezcﬁ) - 3 s°¢

e(s92s¢ - ceeselcﬂ)el (3.16)

As pointed out in Section II it is sufficient to check U for positive

definiteness rather than V .
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It is easy to check that

ou ou

— = = 0 (3'17)
L) 6
1 61._62.. 2 91..62= )
which confirms the existence of the equilibrium at 6. = 6. =0 .

1 2
To determine the conditions for positive definiteness of U we apply

Sylvestert's criterion [21]. According to this criterion we conclude

that U 1is positive definite if the following conditions are satisfied

FYac)

5 = A ﬂg [r(140) - 1 - -gc2¢] >0
o8

E
(3.18)

2
Bel 692 172 E

+ e(=br + 4 - bro + 3rozc2ﬂ) - 12(-:252%225] >0

It should be noted that if € 1is set equal to zero the same stebility
criteria is obtained as warn obtained by Pringle [9] and Likins [10]

for the symmetrical body. When € is not zero the time dependent
terms are introduced through « and @ . For small values of €

the boundary of the r:gion within which U is positive definite can be
determined by neglecting terms in €2 e Writing the binomisl expansion

of Eq. (3.12) and retaining the first two terms only, gives



agal+e-ﬂ3—z%c2¢=al+eﬂj-—r%.(202¢-l) (3.19)

so that Eq's. (3.18) become

(4e.) ~1=~¢| 7=+ (1 ~=2) %8>0
TG e[hal aal"]

(3.20)
(r-1+ral)(hr-lp+ral)+e[(h-hr-hral+%g—;_-%g—z)

J15 1z 2
+ (3ray 2al+aal)°”]>°

The expansion used in Eq. (3.19) is valid only when 3e/2ral <1 and
the retention of only the first two terms is Jjustified when

3e/2rai << 1 . Consequently, the above expression will not be used to
investigate the region in which is small. In addition, only the

1
region in which al is positive will be considered and € will be
assumed to be sufficiently small to neglect terms in 62 « Under these
restrictions Eq's. (3.20) may be extremized by selecting czﬂ to be
zero or one.¥ It is then found that the requirements for stable motion

are satisfied if the following four conditions are fulfilled:

1601, -5 o2 > 51-r)

. -1
r > + € for
al+1+ hal(al+1+) 1 2r

L 5 2 < 5(3=r)
r> o +h * e hot, (o) for o <52

* 1In doing that the stability requirements are rendered stronger than
necessary and stability may occur even though the resulting inequalities
are not satisfied.

23
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r>ai‘-+—l+eﬁ%af_—ly for cv1<-g (3.21)

r > L + € l'al-3 for o >2
al+1 laallal+1$ 172

Figure 3.2 shows the resulting boundary of the stability region for
€ =0 and € = 0.l , vwhere the boundary for € = 0 is identical with
that shown by Pringle L9] and Likins [10] for the symmetrical body.
The second part of the stability theorem can now be applied.
If the linearized equations are assumed to describe the motion near
E, one may use Floguet's theorem [27] to state that the solutions are
of the form
4 (uj+ivj)'l’
6, = Z T
4 f;j( ) e
=1
(3.22)
b (uj+ivj)'l'
8 =
o= 8y(m) e
J=1

in which fj(T ) and gJ.('T) are periodic functions with the same period
as the periodic coefficients appearing in the differential equations
of motion, which is 21t/211 in this case. Consequently, fj('r) and

gj('r) mey be expanded in terms of Fourier series so that
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[--]

- u, T i(v +2ka. )T
2:E'e3e‘jl
Jk

(3.23)

e

z E ” uT i(v, +2kal)'r

J=1 k==®

In the neighborhood of the equilibrium position, terms in the

third and higher powers of the coordinates and velocities will be

neglected as small compared with second power terms, so that the partial

derivative of the testing function V with respect to time may be

written as

- ._-l 2{ 12 2 [ I L}
T= ST =5 € AR, ai(e 1- 9'5) s 2oyt + 20y 6°0) ¢ 2ayT

[(3-a)62+(3+ha)62:|saa'r+8a99 0206"}+0(€

(3.24)

Substituting Eq's. (3.23) into Eq. (3.24) and integrating from T

to T an expression of the following form is obtained

sin(azl'l‘+6)d‘r

I\/I-P‘
ﬁfr\/w;r

OZD h jT (uj+uz)"' ei(vj+v£+2kal)'f

0

T
=

(3.25)



Four cases must be investigated.

B uJ tuy=<0, v& + vy + 2kai # a;l
b. uy +ug >0, vj+v£+'a<al#aal
Ce Uy +u, s 0, vy + oV, ZO = 20 (3.26)
d. uj+uz>0, vj+vz+2cal=azl

The first two cases are nonresonant cases, so that the value of the
integral varies periodically with time. Case a. represents stable
motion whereas case b. is clearly impossible since, for large t ,
the Hamiltonian would oscillate with increasing amplitude. Cases c.
and d. correspond to resonant motion. Case c. represents bounded
resonant motion and case d. represents divergent motion in which the
Hamiltonian tends to increase without bound with time. Whereas one
cannot distinguish between cases c. and d. it is possible to say that
unstable motion does not occur in the nonresonant case for which the
Hamiltonian is positive definite.

As the value of ¢ = (B-A)/A epproaches zero, in the limit,

the motion must reduce to

o7



i, T . iw T ~iw,T
el=auewl+a12elwl'r+al3e2+alhe e
(3.27)
:uul'l' -iwl'l' iw T =iw,.T
2
62=a21e +a22e +a23e +a2he

Where + wy and + w, are characteristic numbers associated with

the eguations

It
o

81 + 62 [a-r(1+al)3 -6 [1-r(1+al)]
(3.28)

|
(@

680 = O [2-r(14a)] = €, [her(bio)] =

The characteristic numbers have the values

ui=/\/b+a/b2-c , w2=A/ - ¥ - (3.29)

in which
b = -% (1 - r(1-20) - r2(1+a1)2]
(3.30)
2
c= [ - r(5a1+8) + T (l-lal)(lH-al)]
A comparison of Egs. (3.23) and (3.27) shows thet
vy w
v -
1im 2 1
= (3.31)
._0 H
c 3 ®o |
v)-l- "UJ2 )



Consequently when € is small, Eq's. (3.26) lead to the conclusion

that resonance muist occur near the values

W = mr > Wy =My
(m = i l, i 2,.0.) (3.32)
wl+w2=aral P c.ul-w2=2nﬂl

Figure 3.3 shows the locations in the plane Otl vs r near which
resonance will occur in the linearized system and for small € . It
should be noted that the present method gives us the location of

instability regions. To describe the width of these regions different

methods must be chosen as shown in the following discussion,

3.8 Determination of the Regions of Instability - Infinite

Determinant Method

The linearized equations of motion of a spinning, unsymmetrical

satellite in a circular orbit may be shown to be:

LT _ 3 ]+ e .
ei' +6é|: B+e(r:L ho/l)cos azl'f +91 er, sin 3111'

'r] + e(ee) =C

: - g
+ 6, er sin 20,7 + 91[6+1 e(ry hal) cos 20,

eé‘ + 6J [ﬁﬂ-e (ry + E“%) cos axl'f] - 65 er;sin 20, T
(3.33)

[
: T - -
+ Glerlsm T+ 92 [B + 3r (1 )= 2

ol

1
o

+ € (r2+—h§1) cos 3111‘]+0(62) =

59
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in which

B=r(g+)(1 -5 -2
v, = (1 = Z)(iner)

and terms in the second and higher powers of € are grouped in the
terms O(€2) and will be neglected in the first approximation.
The regions of instability are bounded by periodic solutions

of period 2T and T which can be written in the form

Period 2T
el = 2 (aln sin noy T + b, =~ cos nal"'_)
IL=1,3,5,...
(3.35)
6, = 2 (a2n sin noy T + b, cos n(:tl'r)
n=l,3,5--o
Period T
el = 2 (al.n sin o4 T + by cos nal'l')
n=0,2,’-l—,--.
(3.36)

} — . T
6, = E (za,211 sin no, T + b, cos mzl'r)
n=0,2,)+,.oo
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where advantage has been teken of the specific form of Eq's. (3.33) in
eliminating the even n terms in qug.(3-35) and the odd n terms in
Eq’p,(3.36)ﬁ
The general procedure at this point consists of substituting
a Pinite nmumber of terms of either Eq's.(3.35) or (3.36) into the
equations of motion, equating the coefficients of equal harmonics,
setting up the determinant of the coefficients of the assumed periodic
series, expanding this determinant, and solving the resulting equation
for the instability boundaries. This then yields an approximation of
the values of the parameters that satisfy the infinite determinant.
Experience with this procedure shows that for the problem under

consideration the use of only the n =1 terms of Eq's.(3.35) will

define a first approximation for the regions near ui = oi and
Wy = ai » wWhere wl and w2 are the natural frequencies of the

unperturbed system. If the n = 3 terms are also included, a better
approximation of the regions near W =0y and W, = Gy will be
obtained together with a first approximation of the regions near

w = 301 and ab = 3Qi « As more terms are included, the accuracy of
the approximation of the lower order parametric resonances is improved
and regions at which the natural frequencies are approximately equal
to successively higher odd multiples of the average spin frequency,

@ , are defined. When Eq.'s.(3.36) rather than Eq's.(3.35) are used

the even numbered regions are defined in a similar manner.



Inspection of Figure 3.3 of the previous section shows that
regions near wl = ;_ul and w2 = 2041 are to be expected for a
satellite configurations with 1 <r<1,8. These regions can be

defined in the first approximation by assuming

e =al+'blsin2a1'+c cos 20T

1 1 1 1

(3.37)
0 = 3 T T
5 a2 + 'b2 sin Etxl + c2 cos a:zl

Substituting Eq's.(3.37) into the equations of motion, Eq's.(3.33),
and equating the constant terms, the coefficients of sin 2&17 and
the coefficients of cos 20tl’\' to zero, gives the following six algebrailc

equations:
a (B+1) + be [al(rl "h'gi)‘“% rz:] + e [-alrl -%(rl 'T;gz)] =0

ale(rl --Eg-]__) = b2%B + ¢y (-)-ICZ§+B+1) =0

alerl+b2[-ha§+e+3r(1-§) -2:]-claals=o
az[ﬁ+3r(l-'%)-2]+ble[al(rl+—h§—l)+%rl] (3.38)
+02€[ rl+—12-(r2+—l|é;_) ] =0
=0

a2er2+bl(-l:a§+ g+ 1) + c € [alrl+-l2'(r2+—h§:—L) ]

2 €
a € (r2+_h§;)+b1m15+c2['m1+-5+ 3r(1-3) -2]:0
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For nontrivial solutions to exist, the determinsnt of the coefficients
mist be zero. In this case the determinant can be expressed as the
product of two 3 x 3 determinants and will be zero if either of the

3 x 3 determinants is zero.

1 1
pea efw(n - vin) c[mn -3 o)
€(ry - ﬂgg) - 2B - hai +p+1
er, ~hf s pr3r(1-5)-2 - P

p+3r(1-3)-2 e[al( rl*‘hél) +%r1] e["‘l*%(rz*ﬂ%)]

2
er, - hoi + B8+ 1 8;13

e(f2+—hgz) 20, B ~wf s pr3r(1-5)-2

(3.39)

In the process of determining the boundaries of the regions of instability
(which are surfaces in Oi’ r, € space) it is convenient to express

the value of &, in the following terms:

1

2, = c'ui +ae+ A2€2 + aee (i=1,2) (3.40)

where a& is the natural frequency of the system in the absence of the

periodic terms in the equations of motion and is given by

]

fi



2
_ B2+2(3+3r(1-§)-1 ;32+2B+3r(1--§)-1
= { 2 k4 2 )

/ 1/2
.1 1/2
- (p+1)p+3r(1-%) - 2]} } (3.42)

where @, will be assoclated with the positive sign under the radical

1

and E)e with the negetive sign.  The boundaries of the regions of

instability can then be expressed in terms of Eq. (3.40). One finds

that Al = 0 and A2 takes on either of the following values

1

>
1 3 2 2
2] {'( Ty - hal) (2oip+20] = 3 B"% r+l )

(e+1) [16ai + 20 (~2B-3r+l-

A2=
2 2

r.r
12 2
+ ( Ty - —-3—11 ) [-r2al{3+rlal( -8af+a+3r-1 )] - ( -l:al+s+1) +aalrlef

or (3.42)

2
_ 1 1 I T
e (B3r-2) (160 +20 (~2-3r+1-67) ] { 2(m2 ") opren)

>
= (ry+ ﬁ'l') ( ha.':zrl-alrl Tt B +3 @B)

by

2 1’2 2 12
* o, (T, + —ngz) ( -bolipr3r-2) + —£F ( -balp-lalipr3r-2 )}

Figure 3.4 shows the resulting stability boundaries for r = 1.5 .
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One can also investigate the regions of principal instebility,
which are defined as the regions where al is approximately equal to
one of the natural frequencies. Reference to Figure 3.3 shows, however,
that for most wvalues of. r +this type of resonance will not be experienced

for al = wl . To describe this region we will first assume & solution

of the form
8. = 3 T 4 T
l_als:l.nal blcosal
0 = 5 T 4 T
> 8.2 sin al b2 cos al

Substituting into the equations of motion, Eg's. (3.33), and equating
coefficients of the periodic terms one obtains the following four

algebraic equations

o r (04
2 1 € .3 N -
8y ‘:""1* 5 el + 5 (1 llCL_l_)J+b2[alB+2(rl hal) €
I' -
+‘—§€J=O

T o r
al[alﬂ+%(rl+f§_)e+_35€]+b2['a§+ 121 e+B+3r(1-§2-)

r - a.r
az[-alﬁ+il'é(rl+-5g;)e+—-§e]+bli_-ai- 121e
A
+B+1 -%(r:L -—hg-l-) €| =0 (3.4k)
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e+ﬁ+3r(l-—) - 2-%(r2+%ﬂ

r
+bl[-alﬁ+ﬁ2 (r1+_“31) e+-—lée]=0

For nontrivial solutions to exist, the determinant of the coefficients
must be zero, which in this case can be expressed as the product of

the following two 2 x 2 determinants.

-al+ﬁ+1+ £ [alr ﬁal] B + -g [alr1+r2 - -E]
=0
B+ < [a ryry -E] -al+¢3+3r(1-—) -2+ [alr +r, + -E3al— ]
_alﬁ + % [alrl+r2 - -13'.1 -ai'l'&l'l - 2chlrl+rl - —l%]
=0
-OL]?:+B+3r(1 - g) - [alr +Tr, + ha ] -0, B +§ [Ctlrl+rl + ‘E]
(3.45)

The definition of al at the boundary of the resonance instability

region as given in a fashion similar to Eq. (3.40) will be used.

al=ai+A:L€+ swe (3‘)4'6)

The natural frequencies of the system are given in Eq. (3.41). After
expanding the above determinants A.L can be evaluated on the boundary

as follows

68



n LFal(a?f"2ﬁ-3r+1-52) ['Qi(a +8) (2 4r,)
+ (pr1)(oyry 4wy + "451) + (B43r-2) (o 47 - —hg;)] -

Figure 3.5 shows the resulting stability boundary for r = 1.5 .

We can see at this time that the analysis method based on an
infinite determinant defines the resonance instability regions for which
the natural frequency is approximately equal to a multiple of the
frequency expressed in the periodic terms of the equations of motion

w; = o (3.18)

In its present Torm this method does not define the regions of the type

W ow, = 20y (3.49)

3.9 Determination of the Regions of Instability-Asymptotic Method

With the aid of Eg's. (3.11), the 1linearized equations of motion
of the rigid unsymmetrical spinning body, Eq's. (3.8), may be expressed

in the following form:
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e"

1+ BBy + BRdy = e{@11(°2°i¢) 8y + dy(s20y7) 6,

+ 4 (s2ey7) 8 - ), (c20y ) oy} + (8, c2a
+d,, chal'r) Bl + d23(sl+ql'r) oy + deh(shal'r) o)
- (4 2oy + 4y, chayT) B} + ‘3{(d31 cBoyT + dgp clheyT
+ d33 c6a1'r) 91 + (d3h szal’r + d35 s6al'r) 62 + (d36 s2oel'1'

' . ' b
+ d37 s6a1"r) 8 - (d3l 2oy T + d32 chal'r + d33 c6cyl'r) 92} + 0(e’)

(3.50)

+ 639:;_ + B8, = c{ell(seal-r) o + ele(c2al‘r) o, + el3(c2al'r o
2
- ell(s&zl'r) Bé} + € {eEl(shalT) Gl + (e22 c2ay T + €3 cltal'r) &,
' . 1 3
+ (e22 CEo(l'r + ey c)-rcxl'r) el + egl(shal'r) 92} + € {(e3l 520y T
*egp s6ql'r) Gl + (e33 20y T + e, chql"r + €35 c6o¢l'r) 6,

+ (e36 c200 T + e, cll-ql'r * ey c6qel'r) 81
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where all

By

13

2l

+ (e38 seaiTwe s6o. T) 8! }

+ O(eh)

terms up to the 3rd power of ¢

2 - r(l-ée-) (l+crl) - 62(1-';:)

have been included and

-1+ ;<1-§) (1roy) + 2(1-F) —3

-2+ v(1-f) (1) - & (1-F)
- b r(l--;-) (h+crl) + ee(l-g-)

(1-5) (1+ey) - I“?'_l

- (13) (b+ay)

= - D) (e

B

1

8r o

3
8r ai

2r qi



9 r 3
d. =~ + (1-%) (1+2q,)
22 iy ag 2 1 8r o?
1
- . (1. 3
d23 =~ (1 2) (h+2al) . 2r
o
dy, = - (1-) (1420 ) 3

2
8 or

135
a = —_4__ - (1—5) (1+3°, ) 9
3Ly oen.2 qi 2 1 ose qu

4 -9
32 128::'2 o{i

27 r 9
Qpp = -~ —— + (1-%) (1+7e,)
33 100up ai 2 1% 55602 qlﬁ

r
gu = (1-5)(20430) —2—
256r oy

s 1)
|

dpe = = (1-Z) (he3a,) —21
35 ) 1 256r2l "E1

9

(1-2) (5+3 ) —Z—
] 256r° @

dg

(3.51)

3



T4

27

= - (1-3) (139) ——;
37 2 ! 256r2 oy

[2]]
I

o
]

- (1-3) (1)

1]
1]

3 r
10 =" 7;07:; - (1-'2-) (’++0!1)

el3 = - Eg—l ~ (l-g) (l+al)

ey = - (1) (2veay) —3
> o).
1
e ., = 3
22 8’5;
_ 9 r 3
e, = - - (1-%) (b+2o)
23 Ghr a13_ 2 1 8r ai
ep, = - —== - (1) (120)) —35
Glir 031 8r o]
- (1.X 9
e31 = (13) (530) —5—
56r oy
- r 27
e32 - (1-2) (l+30Il) '2-——2—7
56r oy
-1 L@ —Z
e = - +2¢. )
33 0ok °':5L 2 1% poep? o



e3h ) 128r ag_

o35 = " T 3 (1-5) (e+7e) 257923{
€36 = 102%}; + (1-%) (1+3al) -2—52%2—;&-
egp = - -l#gqi - (1) (1470 ;561‘9705
ey = (1-5) (5+7ay) 2—569705

eg9 = - (1-3) (1+7ay) %9271-

The left side of each of Eq's. (3.50) may be considered as
unperturbed equations, while the periodic perturbations are given on
the right sides, and consist of periodic terms multiplied by displace-
ments and velocities. When terms of first order in e are considered,
the perturbing terms can be seen to include coefficients of frequency
aal. Terms in e2 incinde periodic coefficients of frequency 2qi and

hai; terms in e3 include periodic coefficients of frequency Eqi, hal,

and 6al; and if terms in higher powers of ¢ are considered, additional

higher frequencies are included in the perturbations.

™
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Two types of motion will be studied - nonresonant and resonant

oscillations. The resonance oscillations will be further distinguished
as to resonance frequencies that are approximately equal to natural
frequencies and resonance frequencies that are approximately equal to
the sum or difference of natural frequencies. The term natural frequency
is given to the frequencies of oscillation of the system in the absence
of the periodic terms and are given by

1/2.1/2

2
5, -1 B_Ei;i'ia R [( %T.giﬁz) -85, ]

>

(i= 1,2) (3.52)

We will designate Elas the higher natural frequency and EE as the lower

one. The unperturbed equations admit solutions of the form

8, =a c(wl_T+6l) + a, c(w2 T+52)
(3-53)
92 = alxl s(wlT+6l) + agxg s(w2T+62)

in which al

angles, and kl and Kg are the ratios of amplitudes of 8, and 6, motion

and a, are arbitrary amplitudes, 61 and 62 are arbitrary phase

necessary to satisfy the unperturbed equations of motion and are given by



d

N = @ - By)/Bymy = By /(@ - By, (i=1,2) (3.54)

3.9.1 XNonresonance Oscillation

When the netural frequencies of the unperturbed system are
sufficiently different from the frequencies appearing in the perturbation
terms on the right-hand side of Eq's. (3.50), the equations of motion

can be satisfied by solutions of the form

2
- ! I ven
8, =8, c(vlT+6l) + a, c(v27+62) + ull(T)e + ulE(T)e +
(3+55)
2 2
6, = al(kl+elll+e k12+...) s(¢17+6l) + a2(A2+ex21+e k22+...) s(¢27+62)

2
+uy,y T)e + u22(7)e + e

in which the frequencies *1 and ¢2 are almost equal to the natural

frequencies and are given by

- 2
¢l =, + Alle + Alze + e

17
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*2 =E2 + A21e + A22€2 + wee (3°56)

In the above assumed form of solution, ay and a, are arbitrary small
amplitudes and 61 and 62 are arbitrary phase angles. The ratios of
amplituded, given by the A's, and the difference between the frequency
of oscillation and the natural frequency of the unperturbed system,
given in terms of the Aij’ are treated as constants. In a somewhat
more general form the amplitude could be treated as a function of
time, but formal substitution into the equations of motion and solution
for the coefficients of the time~dependént terms in the amplitude shows
the latter to be zero for nonresonant oscillation,

In the case of nonresonant oscilliation no coupling occurs
between the two principal oscillations (one near the frequency El
and the other near HE) s0 one needs to consider only the case of a

single oscillation. Consequently, the solution derived below will

yield the solution with frequency of the principle oscillation near

®, when the coefficients are derived using E& and will yield the

1

solution with principle frequency near EE when EE is used in computing

the coefficients. The assumed form of solution is given below and
the expansion will be completed through all terms in 92. Hence, assume
2

= \
o, =2 c(y T+8) + U, €+ uye



2 2
= a(A
62 a( +ehl+e A2) s(y T+6) + Uyp €+ Ups€
- 2
vV = w +_Al € + A2 €
0! = -a(Bred, +eoh ) s(¥ T48) +u', e +ul. &
1 17¢ % "1 Y1p €
- ~ 2 —p
o) = a[w Ae(W Ay A) + e (w K2+Alll+421)] c(¥ T+8)
+ul. e+ u, € (3.57)
21 22 :
- —p — 2,2 — . 2
ei = - a[w + e(eAlw) + € (Al + 2A2w)_\ (¥ T+68) + uile + ui’ze
wo_o_ =0 - =P 2 - -2 2
92 = aLw A+ e(aAlw A+w ll) + € (2Al w xl+w )\2+Al A

+ 24, w X)J s(v 7+8) + ugl €+ ugz &

Substituting into Eq's. (3.50) and noting that

el 8, w - B, =0
(3.58)
AT+ By ®- 2B, =0
we obtain

¥Although it appears that the equations are separated asccording to their
order in ¢, one should recall that u!, and ugj contain terms in e, €2...

iJ

9



e{g[-eAfﬁ + Bl(EKl+Alx)] c(tT+8) + u{l + ﬁluél + BQull}

+

ee{é[-(Ai+2A2E) + (EXE+A111+AEA) 31] c(¥T+8) + u{E + ﬁl?ée

= E it [ - A W - A—J
Beule} 8{2 c(2q17+\7+6) dyq - dppr + dl3w 4 A

a -— -—
ol —$T- A - -
5 c(ZQiT pT 6)[dll +d, dl3w dllij}

92{°2qiT(d11u11'd11“é1) + 820 T(dyju, +d) Jug, ) (3.59)

i

e

e

dy

c(2qiT+w¢+6)
c(2qiT-$T—5)

c(hoiT+¢T+6)

. B} Th+A A 5 ]
] dlle + dl dll(w 1+Al ) + d21(1 wA)

31
a ) - d s - (B HAR) + dgl(l_aa)]

12 1 1371

- = a
|9pp - B3 + 858 - 4 | + 3 e(hay 7-y7-6) 8

g -y - daéaxJ}

—_ =P t t
e{a[- (2Alu))\+w 7\1) - AlSB + xlBhJ s(yr+8) + Usyy + ﬁ3ull

2 — D 2
* puuzl} *e {é[ - (28, 0h) + WX, o+ AR) - BB,

* l2’3&]

f ' _ a
s(78) ugy + Baul, + Bhuee} = ‘{ 5 s(@oyT



+¥T1+68) [ell + elzh - elém - ellEK] + % S(EaiT-wT-ﬁ) [ell - 3121

+

— —_ 2{
el3w - ellkw]} + € 18 quT(eliullfelIPEl) + e 2q17(e12u21

+

& . Tt [ - - ©
el3ull) *5 s(2Q1T+VT+6) elle el3Al ell(wxl+AlA)

+

— a —
e22(1-w)] +35 s(eniT—wT-G) ['elle + el3Al - ell(wll+A1X)

e22(h-w)] + 3 s(hoiT+¢T+6) [eel + e23l - ey 0+ eelWK]

a ——
5 s(beyT-¥7-8) [321 - epgh T ey @t e21wx]}

+

Equating the coefficients of the first power of e in Eq's. (3.59)
and requiring that U,y and Uy include the terms of frequency other

than { gives
eAlw + sl(wxl + AlX) =0
—_ =D 3
- (28) Bwh)) - ARy + A8 =0

L

" ' =& 1 [ - = —_
ujy * U8y + By = § (2 Thimie) [dy - dpph + ay B - 4,3 ]
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a - —-
+5 c(2a17-¢7-5) [@ll + dlal - dl3w - dllkw] (3.60) .

1 * uilﬁ3 u,.8, =3 s(20 THYT+8) [ €1q el - e w - e k]
+ 5 (2 T-ur-8) [ €17 - Cpph + g0 - ey k® ]
The first two of Eq's. (3.60) are satisfied only if

A, =X =0 (3.61)

The second two of Eq's (3.60) are satisfied, ignoring higher order terms

in ¢ arising in the total aerivative sterms of Y q and Uy when

= ! T
uyy fll a c(2017+UT+6) + 1,8 c(zqiT yr-8)

(3.62)

- ! 7=
W, =8, 8 s(2017+u7+6) + 8, @ s(2°iT IT-8)

in which

f11 7 2 LB - (2ai+w) ] Leh - (2u&+w) ] + BlB (2u )2 {qll(l-xa)

S h s a1333] (8, - (ay®)?] - [ (238) + e 1



el36 [51(2ql+'63) ]}

1 e _ 1 B
€11 =35 [Be i (2q1+m)2 _l L-Bl;'(g"‘l"”a)e] . 3133(2al+75)2 {[dll(l )

dle)\ + dl3'<5] [53(2cv1+6)]+[e11(l—)¢_o) + ele?\ - elS'Cu'] [32

(2al+6)2] (3.63)

=L _ 1 N
f10 =3 [e, - (2&1_6)2] Lﬁh‘(g"’l‘m)z _| Yy (eql-a)e {[dll(l w)

+

dlg)\ - dl36] [ah - (eql-6)2] - [ell(l-m)\) - e 2)‘

+

e1361 [51(2“1'6)]}

{[dll(l-)\?ﬁ)

o+

[Bg-(Qo.fl_'u,')2] ‘_54‘ (Eal-a)gj ey (2al-6)2

+

a M - d136} [53(qu-63)] +[ell(l—'u3k) - e M+ 6135]:62-(20'1-33)2]}

Next the coefficients of e2 terms in Eq's. (3.59) can be equated.*

¥Note that, in general, terms arising from the derivatives of U4 and
Uso must be included.
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After substitution of Eq's (3.61) through (3.63) and applying harmonic

balance the result obtained is given by the following four relations
— — 1
8,(28-20) + A0B) =3 { ay1(£19%F50) + a,(epq%8),)
-dlS[fll(2qi+E) + flE(EQi-E)J - dll[gll(eqi+6) + glg(eci_a)]}
Az(-2EX-E3) + Ae(eh'E?) = % {ell(-fll+f12) + elg(gll—glz)
'613[f11(2°i+6) "fle(eql“m)] - 4yy| -8y, (Bay-0) + glE(EQl_E)]

(3-64)

1" ' - i 1 -—- ] i
Uy, * Blu22 + BQuL2 5 C(EQiT+VT+6) [d21(1 wA) |+ 5 C(QQiT

' = a2 1 [ o) - Y
_¢T_5)[d2l(l_wx)]-+ 5 c(hqlT+UT+6) d22(1 wA) degl+d2hw+dllfll

- - a
- d12gll + dl3(2al+w) f£14 - dll(2q1+w) g111 * 3 c(hqlT

R 0 A - m -4
47-8) [a22(1 wh) + d23 dguw +d),F15 - 4180,



+

3 ) 21, - a4y oy D) gy, (3-65)
Uy, * iRy + By = -Z‘- s(2ql'r+q:'r+6) [e22()\_a)]

g— s(2a'l'r-1'y'r-6) [ege(&)\)] + % s(hal'r—x'x'r-é) [e21(1+5)\)

+

* eg37L - eon® - 89y - S8y * (2“ ) £45 + ey (20

+

w) gll] = s(ho« T-fr-8) [ 21(1+wx) - e 37\ + eehw - &31%95

e1o81p * (2a -m) £1s ll(2°‘ -w)gle_l

Equations (3.64) give the following values for AE and 7\2

1 1
b =3 a, . (£, _+f. )
2 2 (ap -2w)(p,-0") + (26h+p,) By {< 11+ 11" 12

4

_ I “0) | - . +0
dyp(eqy+ey,) ‘1:L3[f11(2"’1“")+ £1(20 ‘”)] dll[gll( 0y +0)

+

815(20y-8) | D88 - oy (-2140)5) + ep(ey1-615) -

el3[fll(2cvl+—w') - f12(20'l-t_13)] - ell[—gll(201+6) (3.66)
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810(2a; -®) ]> GBJ

1 1
=3 <1 (£, .+, )
? B (08,-20)(8,-T) + (2BMn,) Bla{ 11411712

-+

+

d)5(81978,) - dl_1L3[JE'11(2"’J.+E) + flE(go'l-E)] - dll[g11(2°‘1
W) + glg(Qoi-E)]:>(25h+s3) + ell(-fll+f12) + e12(gll-g12)
i} el3[fll(2ul+6) - f12(2al-'63)] - ell[-gu(e¢1+a)

N g12(2011-6)1>()\81-26)}

. .
and from Eq's. (3.65) one can obtain uy, and u,,

= ‘? _l -
Y5 f21 a C(2qlT+LT+6) + f12 a c(2alT vr-8)
Iy +UT+8) + he T-0T-
+ T 5 a cf aiT Y7+8) fg! a of Oi YT-8)
— 3 U T-
Usy = 8pq @ S(quT+LlT+5) + 8op 2 S(EQiT y7-8)



* 8y @ s(kop TryT+6) + go), & s(bay T-¥7-8)

in which
£, == .(121(1-6)‘)[51;'(2“1@)2] - 322(7\—5)[81(2u1+6)]
21 " 2 LBE - (2""1*‘”_)21 ‘.Bu " (20[1@)2 J _ 81-83 (2ul+‘u3)2
£ = 5 @gl(l-ﬁl)[%(zaf’w‘)j ! eee(x‘a)[se - (2a1+6)2]
21~ 2 LBQ - (2ql+6)2] LBLL - (2al+ﬁ'))ﬁ - 5183(20'11@)2
f = 1 .del(l-)@)[sh - _(20[1—5)2] + eee(x-?ﬁ)[gl(gal_a)]
22 T 3 [52 . (20/_1-6)2 J l_Bu ) (20,1-6)2 _l i 6133(2a1-6)2
) afaen ] - 0[5, - 5]
80 T 3

[ﬁg ) (2dl_6)2:l LBIL N (2&1‘?")2] - 5153(201-?0)2
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_ 1
f23 - - 2 {[dea(l

[52 i (l“"f‘-”-)e] L*Bh - (”“1‘”‘”)2-] - By B3liag )

I+

-0A) - Qpoh Ay O dygFy - dyo8yg + dy5(204+0) £,

3
— —2 -

- dyy (2o +0) g11] [54 - (Boyro) ] - [eel(lm)‘) * epgh

- g0 = 9Ty - @8y ¥ e13(2°’1 t ) Ty * ey (B

+B) gy |[8,0®)] }

(3.68)

{[d22(l

=

_ i 1
£23 [e, - (o +®)° | |8, - (hoyr3)?] - B, (ko +m)?

-wA) - dg A+ dahw + 4.,

11511 - G108y * 4y5(Beprele,

3

- d11(2°’1+6)g11] [53(1“”1*-‘5)] * [eel(“a}‘) *epgh - ep

- e9Tyg - €8y * ep5(Byt0) F3q + eyq(2ay+w) gu] [52
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€o) =

- (va+w)° J}

=X 1 _
Top = 3 [92 ) (hOi_E)z] LBu i (haliﬁfij i 8163(hai-w)2 { [d22(l

-oA) +d. A -d,0+d..f. -4 g -
23 ol 11712 12°12 + d13(eqi-w) 1o

w —\2 —
- dll(eafl-w) gle] [Bh - (hcxl-w) ] - [e21(1+wx) - e23)\
+ egh'u—) - e fis - €085 * el3(2oll-(f)) £, + ell(gdl
-w) ng] [Bl(ho,/l-w)]}

2 {[dZE(l

i

- , 1
Lsz - (hai+6)2J Lsu - (h“i'a)g] - 5153(u°i-6)

SBA) + dgah - Ay B+ dg f

3 12510 - Gyo81p + 8y5(2-0) £op

- 4, (207 -8) ng [53(1;&1-6)} + [ezl (1481) - epoh + oy

- ey fyp - €p81p * 0y5(204-0) £y + e11(2°i'w)g12] [32
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- (4qi-w)2]}

Consequently the nonresonant solution of Eq's. (3.50), showing terms

through the second power of ¢, can be written as

2
N a{p(u7+6) + (flle+f21e ) c(2011+v7+5) + (flge

2 2 2
T UT-
+T,,¢ c(zaif $r-8) + f23e c(hciT+¢T+6) + £, € c(hoiw vT-8)

+ 0(93)}
(3.69)

B, = a{(l+ezl ) s(¥T+8) + (g, . e+ 32) s(2c, T+¥T+8) + (g, €
o = 2 81178, 1 P

+ eg) (2o, T-¥T-8) + e s(beo., THITHE) + g 2 s(bo, T

Epp® / Ble0y €23 1 ol © 1

- $7-8) + 0(e3)}

v o= @+ A2€2 + 0(63)



Note that the phase angle & 1s completely arbitrary in the
nonresonant solution. It can be seen that the frequency of the
principal oscillation is slightly different from the natural frequency
of the unperturbed system the difference being a term in the second
(and higher) power of the small parameter, ¢. Additional oscillatory
terms appear, but with smaller amplitudes. Terms of frequency 2q1 + ¥
appear with a coefficient in the first and higher powers of e, terms
of frequency hqi + } appear with a coefficient in the second and higher
power of ¢, and it is apparent from the recursive process used to
determine the oscillatory terms that terms of frequency 2nal + ¥y
appear with a coefficient in the nth and higher powers of e. It is
instructive to look at the typical size of the coefficients appearing
in the nonresonant solution, Eq's. (3.69). Taking as an example the
nonresonant solution with principal frequency near the first natural

frequency and with the following parameters:

r = 1.5, a = 1.0, e = 0.1 (3.70)
One obtains
w = El = 2.1
(3.71)
A= -1.k33
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and the solution is

¥ = 1.00073w
8, = a{c(¢¢+6) + .0163 c(2oiT+¢T+6) + .0586 c(2qlT—¢T—6)
+ .0000k c(hqif+¢f+6) - .0062 c(hqiT—¢T-6) + 0(93)}
8, = a{-l.u35 s(§y7+8) -.0L6k s(20(l'r+\‘;'r+6) -.1203 s(2qlT-\’rT-6)

.00003 s(hql'r+¢r'r+6) + .00Lk s(hqlT-w'r-ﬁ) + O(e3)}
(3.72)

In spite of the fact that a relatively large value of e has been

chosen in the example, (10 percent difference in the transverse

moments of inertia of the rigid body) the frequency of the principal
oscillation is only slightly different from the natural frequency

of the unperturbed system, and the relative amplitudes of the oscillations
at other frequencies are seen to be small. Thus the coefficients of
higher frequency terms are expected to he extremely small, since they
appear only in terms with coefficients including ¢ +o a high power

as a factor.



3.9.2 Resonance Oscillations

In the analysis of the previous section, the form of the
solution would have been entirely different if the frequency of
oscillation, ¢i, had been equal to one of the frequencies appearing

. on the right side of the perturbed equations. The phase angle
between the resonant motion and the periodic coefficients becomes
important in this case. Also, the amplitude of the motion must,in
general, be a function of time. Consequently, we may investigate a

solution of the form

2 2
8y = (b+blT€+b2T€ + vo.) (P T+8) + ull(T) e + ulE(T) € + ...
(3.73)
8, = (btb_Te+tb Teoh .. ) (A+er +EN vor) 9(® THE+S, 48 2, )
2 12 e 1T T2 1808+ ..

+

2
ugl(T) e + u22(7) €+ ...

In the interest of brevity this analysis is shown for the first
or "principal’ reglon of instability for which terms only through the
first power of € are required. Thils occurs when & natural frequency

is nearly equal to o,, so that the freguency of oscillation is

1
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_¢=ql=m+'Ale+A2e2+ (3.74)

Introducing the assumed solution into Eq's. (3.50) and again using

Eq's. (3.58) one obtains
b c(cxl'r+6) [-2A1'(E + lela + alAlx] + s(cvl‘r+6) [bl(-26+sl7\)
- b 51)‘7’381] Uy ungBy U8, = 5 c(3a, 7+6) [dll(l'm;)
- )+ alSG] + 2 e(oym-8) [a,(1-3T) + 4yt - dl3m]
(3.75)

b s(aiw+6) [-2EM1A - wgkl - B3Al + Bukl] + c(alT+6) [bl(EAE#B3)

"2 1 N _P_ s
+ b(Bh'w ) 6ll] tug, + ullﬁ3 + u2lﬂh =5 S(3aiT+6) [ell(l-lw)

+ e A -e Tﬁ] + g s(qlT—5) [eu(l—)\a) e127\ + el3-(5]

12 13

The quantities vy and u,, can be selected so as to include the non-

resonant oscillation of frequency 3qi and to include no resonant

motion of frequency o - The coefficients of cos oiT and sin olT

ok



(the resonant terms) can be equated to zero giving the following four

equstions.

[Al(BlLam) * 7‘1’316:1“’ + [1%' (py2-20) - 617‘-‘-"'31]’56 =%' [dn]°5

[Al(elh-e'w') + xlgla?]aa + [le (alx-a'u')) - al_x'u')gl]cs = -é- [dn]sb
(3.76)

b
[Al(-s3-2m) + xl(sh_a?)]sa + [_bl (2XB+,) + & (B, -T°)A et

2k

b
1 (o7 -2
[T:" (27\w+s3) + 61(eh‘w )x]sa

[8,(--2) + 2 (p, -3 e

5 [e s

in which
d =4 (1-2w) + 4, A -4, ®

(3.77)
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= “Aw) - A w
e ell(l w) el + e g0
For any value of the phase angle & <there must be only one solution
to the four simultaneous linear algebraic equations, Eq's. (3.76), in
terms of the parameters 4;, A;, §,, and bl/b.
Our interest is principally in describing the width of the

possible unstable resonance region, given by Al, and in noting the

value of the coefficient bl- Equations (3.76) can be solved to give
) -
A, = = c26 (BT - epfy®
172 — —2 =
(B \-2B)(B,-T°) + p,B(2WA48,)
. (3.78)
i, —
b1 s ) - o
= — —5 —
b ° (Bll-zw)(gh-w ) + allw(gwk+53)

When bl is not zero the amplitude of the oscillation will become
unbounded for large T , as may be seen by inspection of Eq's. (3.73).
When bl is zero the motion is periodic.

The analysis of the previous section showed that bounded
oscillatory motion can occur on the boundaries of the resonance
regions. Inspection of the second of Eq's. (3.78) shows that this

oceurs at § = nt/2 , (n = 0,1,2 ...). Furthermore, inspection of the



first of Eq's (3.78) shows that A, reaches its largest absolute value

1
when 6§ = nn/2 , (n = 0,1,2 ...).
As o mumerical example, the case of the first resonance region,
for which EE = oy and r = 1.5, can be selected. This case was
investigated by the previous method. Selecting a value of ¢ = 0.1

we find that

>
I

= .037 cos 28

(3-79)

]

by/b = .0k25 sin 26

Inspection of Eq's. (3.76) shows, as expected, that bounded oscillatory
mo’tion (bl/b = 0) occurs on the boundary of the resonance region,

since Al takes on its maximum absolute values when § = nxn/2, (n =

0,1, ...). This same approach could be repeated for other resonance

regions for which E& or db was approximately equal to noy ,

(n = 1,2, ...).

3.9.3 DBoundaries of the Resonance Regions

The method of the previous section could be used to describe
the resonance regions, but a less time consuming procedure can be

used since it is only necessary to describe the boundaries of the
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unstable resonance regions. For this purpose, one can look for
resonance solutions to the differential equations, Eq's. (3.50),

for which the time dependence of the amplitude (see Eq's. (3.73)) is
zZero. Also, experience with this analysis shows that the equations
of motion can be satisfied in this case without the assumed phase
shift between the 91 and 92 motion, as given by the terms 61, 62, cos,
so that the assumed resonance solution on the boundary of the region

of instability is

6, =Db c(4’7+63) + ull(T)e + u12('r)e2 + oeue

(3.80)*

[a2]
il

b(lj+€ljlf€kje+ we) s(¢’7+53) + ugl(T)e + u22(7)62 + e

in which & is the frequency of the resonance oscillation and can

be. expressed in the form

— 2
d = y Aje + Bye + ... (3.81)
and j = 1 or 2 depending upon whether the frequency of the resonance
oscillation is approximately equal to El or EE.

Similtaneous resonant and nonresonant oscillations may take

place, with the frequency of the principal oscillation of the resonant

*The phase angle 855 (3 = 1,2), should not be confused with the
higher order phasevangles in the second of Eg's. (3.73).
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motion near one natural frequency and the frequency of the principal

oscillation of the nonresonant motion near the other natural frequency

Consequently we will assume a complete solution that includes both
resonant and nonresonsnt solutions. In this case the nonresoﬁant
solution proves to be identical with that obtainéd earlier. There-
fore the complete solution includes the resonance solution given by
Eq's. (3.80) and (3.81) plus the nonresonance solution given by Eq's.
(3.69). 1In the following analysis the subscript i designates the
natural frequency near which the nonresonant oscillation takes place
and the subscript Jj designates the natural frequency near which
the resonant oscillation takes place.

The assumed solution can be substltuted into the equations
of motion, Eq's (3.50) and the coefficients of every power of ¢
can be set equal to zero. Setting the coefficients of ¢ equal to

*
zero yields
s - " '
b c(® T+6J) [Al(BlXj mj) + Ajlale] + w'y + ﬁlu21 + Bzull

= 2 1 [ - - _]
=5 c(2017+v7+éi) dll(l wili) a Ri + dlei

12

*
As before, terms in e, 32, etc. arising in uéj and u{. are carried
forward to the higher order approximations. J
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2 T [ -0 - w
+ 5 c(QQiT i 61) dll(l wili) + dleli d13wi]
b [ s m ]
+ 3 c(2ql'r+<I>r+6j) dll(l-wj)\J) - dlel,j + dlSwj
'b — -—
- - Pr- - )
+ 5 c(2c_vl"r &r Gj )[_dll(l wjhj) + dl2 3 dl3wj]

(3.82)
b s(¢r+6j)[Al(-53-QEj7\j) (8,82 |+ ul v By ¢ Buy
= % s(2n'l-r+1!."r+6i)[ell(l-'d)'i)\i) +e ) - el3?5i + % s(2a T
-M—éi)[ell(l-ﬁiki) - eyphy ey B |+ ‘123 s (20 T+@r
+5J)[eu(l-ﬁ)'j7xj) + el - el3aj] +2 s(ecv.lT-@r-sj)[ell(l
BA) - epphy ¢ e13aj]

Resonance terms are of frequency ¢ and will occur on the
right side of the above equations when any of the following conditions

exists:
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(3-83)

The stability boundary given by the positive sign in the second

of Eq's. (3.83) corresponds to the zero spin case, oy = 0, for which
the present equations do not give a valid representation. Also we
will consider orly positive values of - Recalling that ¢ and

® are approximately equal to E& and 55, the resonances that
result from Eq's. (3.83) occur at

1T %
Wy = %

(3.84)
Wy - Yy =20y

The first of these resonances were described in detail in the

previous section.

nQ

The width of the resonance region for which El + Eé 2al

can be defined by assuming 1 = 1 and J = 2 so that

loi



(3.85)

*
in which terms in e +to the second and higher powers are ignored .
The boundaries of the resonance region are then given by the spin

rate satisfying

= —(w + +e 8,) (3.86)

Substituting into Eq's (3.82) and equating the coefficients of the

resonant terms one obtains

i -2w.) + o | =2 -
b (20 T ”T+52)[A1(91X2 2ay) Aelﬁl‘”z} 5 c(2a ¢

s (T g -4 (3.87)

b s(eai¢-¢¢+52)[Al(-a3-2 2) + xgl(eh.w2 )J S(2qiT-¢T

*A resonance with frequency of its principal oscillation near E&
(i=2, j=1) is yet to be determined.

102



- B - el A G ]
8 ){egn (102 ) - g by + ey
These equations can be satisfied when

8, - &, =nx (n=0, 2,2, ...) (3.88)

Consequently, the boundaries of the region of instability, given by

Al) are

2 — — - — -
(ph'ub)[dll(l-wlll)+d12Al-dl3wl]-alw2[ell(l-wlll)'e12xl+el3w1]

(51A2'EE)(Bh“652) + (Bgr2yhy) By, (3.89)

= a
A &

Inspection of the gbove relation shows that the width of the
resonance region is a function of the relative amplitude of motion
of the nonresonant and the resonant oscillation, a/b. Consequently,
unique graphs of the width of this type of resonance region, such
as were given in Figures 3.4 and 3.5, cannot be given. In fact, if
the nonresonant oscillation is zero the instability region disappears.
Nonetheless, this 1s a true instability region, since an infinitesimal
initial perturbation from the equilibrium would excite both the
resonant and nonresonant modes, and unbounded resonant motion would
occur for values of spin rate falling between the boundaries given by

Eq's. (3.86) and (3.89). If a higher order approximation of the
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location of the stability boundary is desired, the boundar& may

be described by further terms in the expansion in terms of powers

of ¢ such that

d = 62 + Ale + A2e2 + A3e3 + oves
(3.90)

= —-(w +w +eh ,*e 2p +¢3A3 ces)

by expansion of the equations of motion to higher powers of ¢

and determining the constants to satisfy the equations for each

successive power of e.

When the spin rate is such that no resonance occurs as given

by Eq's. (3.83) then

by =ty =0 (3-91)
and
u,., = f(i)a c(2q, T+yT+S, ) + f(i)a e(20, T-§7-8.,)
117 1 1 R T 1 i
+ f(j)b c(2q, T+Pr+8,) + f(j)b c(2o, T-%r-6.)
11 % 3 12 1 3
(3-92)



u = gﬁ)a S(Edl'r+l'.r'r+6i) + g( )8. S(Ea e .y,,r_él)

12

+ gii)b s(eqif+¢w+63) + g(J)b s(ea T-Pr-8 )

where the coefficients f and g are given by Eq's. (3.62).

The superscripts i and J may take on the values 1 or 2 and
designate the natural frequency, wl or w2,
calculation of the coefficients £ and g.

that must be used in

When no resonance takes place in the ¢ order terms, the
substitution of the assumed resonance plus nonresonance solutions
into the expansion of the equations of motion results in the

following coefficient of ee.

b c(¢k+6j)[A2(-2wJ+Kjﬂl) + A

2%48y ]* o T B, + By,

b
t 3 c(2al'r+<1>r+6j) h'j2

IV L2

a
a I
c(¢W+5J) hjl + 3 c(20i1+v7+6i) hyp

c(?oiT-VT—5 ) hi3 = C(2qiT ¢W-6 ) h 5 C(AQiT

|

syred;) By + 2 clbagre@res) By + 5 olbagT-47-8,) by

b
+ 3 c(lq, 7-%r-6,) h,
* I (3.93)
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™ ~2 1] '
b s(4?+63)[A2(-B3-2wJXJ) + )\Je(Bh-wj )] +u, + u1233 * u,By

b a ‘b
2 s(Er+b ol T 2 2 &r
3 s( +)j) zjl + 5 s(EQlT UT+Gi) 40 + 3 s(20, T+

a b _
+ éj) Eje + 3 s(2qiT-¢T-6i) Zi3 + 5 s(QQiT-Q#-GJ) £j3

+

.a'_ 1) E. §'_
5 s(hoiT+JT+61) Lih * 3 s(ha17+4?+éj) zjh * 5 s(hoiw
4r=6.) £, + 2 s(ha, T-@r-5_) £
i’ i5 2 1 J* 35
in which
g = Gy (F)34815) + dya(8y%8),) - d13[f11(2°i+wk) + £15(209
'wk)] + dll[g11(2“1+wk) * g12(2ai_wk)J

)

= = -_x
hyp = Byy = 4y (-0 A

) - m i
By, = Gpp(1-GAy) = d b + a8 +dyyfyy - dypByy + dy5(20

W) £14 - 4y, (200+0) ggy
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his = dpp(T-B A ) + dpody - dy By + dygfep - dy8y, + & 5(20)
-a) £1p - a5, (2019 &5 (3.9%)

i = €1 (-F11+F00) + en(8y5-85) - e13[f11(2“1+2’3k) - £yp(20
—ak)] N e11[‘g11(2""1+6k) * 812(2°i’6k)]

Zk2 = = £k3 = eeg()\k—wk

T A e T - .
iy = o (WOM) + epadimen, By - eggf)) - a8y * egs(20y

o) £+ ey (2ot ) gy

-e . T

. = w A ) - w. -
g ey (1rehy) - ey o1 - €11T10 - €10810 * €132

k5 M te

3

+u)k) f12 + ell(2<yl+wk) 3

Resonant motion will occur in the e2 expansion (under the
assumed condition of no resonance in the ¢ expansion) when &

is equal to one of the frequencies appearing for the first time on
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the right side of Eq's. (3.93). This includes

P=la + ¥

(3.95)

Again eliminating cases corresponding to zero or negative values of

o5 these resonances are seen to correspond to

~

wl 2qi
®, = 204
(3.96)
wy + w, = hql
(Dl - (l.)2 = ).|.ql

The first two of these cases were investigated by the method of the
previous section.
The resonance region for which 51 + EE :'hqi can be described

by assuming



(3.97)

Equating the resonant terms of Eq's. (3.93) one obtains
'r—'+6{-_ o ]
b c(hal b E)Ae( 2w2+k251) + kaeweﬁl

a

-] a et
=3 c(hoiT-WT+62) h21 +35 c(holT_LT_al)

h15

(3.98)

- 2
b s(ucvlrr-w-wae)[AE(-B3-ew2x2) + x22(ah-w2)]

b a
=3 s(hoiT-kT+52) 121 +3 s(hwlT-ww-al) 115

I
5
A

o
Lo
5

n

°
=

Al
=

-
N’

These equations are satisfied when 61 - 62

The equations can be solved to give

1 -2
P — {01 (8,5
(Bu-wé)(-2w2+x281)+-(33+2ub12) uéal

[~
I
V) o

(3.99)
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- a e -—
- 4198 + 5 [hls(eu'“’e) - ’zls‘”esl}

The corresponding values of the spin rate at the boundaries of the

instability region are obtained using

o = ILI Lq’”’_i = f rF’1 M €2A2.
[Per Eq. (3.99)]
(3.100)
+ eeAe + 0(53)]

[Per Eq. (3.99)]

Note that the nonresonant frequency correction given by Eq. (3.66) is
included, and is calculated for nonresonant oscillation with
frequency near El'

Inspection of Eq. (3.99) shows that the width of this
resongnce region is again a function of the relative amplitude of
nonresonant to resonant motion, a/b, and the previous remarks
are again applicable.

When the spin rate is such that no resonance occurs as given

by either Eq's. (3.84) or (3.96), A2 and A o &re given by Eq's.

J

(3.66) and the nonresonance terms are



i

i i
u,,. = fél)a c(Eorl'r+1!'r+61) + fée)a c(2cvl‘l'-\1r'r-51)

+ f(i)a c(hoiT+¢T+Gi) féi)a c(hnif_mT-ai)

+

+ f(J)b c(20rl‘r+<1"ﬂ-6'j) + fég)b c(2cyl'r-<1>'r-6j)

+ fé%)b c(hc17+¢W+63) + féi)b c(haif-¢W-53)

(3.101)
(i)

_ (1) )
Upp = Bgy e 5(20y THITHE, ) + g 0 7a

+

s(2oiT-¢T-5i)

(1)

o), '2 s(hcvl'r-ﬁr -r..Gi)

+

+ (1 )a. s(hul'f+x'r'r+6i)

('j)b s(2ryl'r+¢r+63) + gég)b s(2al1'—@r-63)

+

« gty s(hofl'r+<1>r+5j) gé‘j)b S(hﬂlT-‘I’T-f’j)

I

where the coefficients in the above expressions are given by Eq's.
(3.68) and the superscripts i and j denote the natural frequency
that should be used in caleculating each coefficient.

When no resonance takes place in the e or e2 order terms,

the substitution of the assumed resonance plus nonresonsnce solutions

into the asymptotic expansion of the equations of motion results in
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the following coefficient of e3.

b[A (B A 2w ) + )\J3Ble:] c(<I’r+6 ) + u" + 31 23 u13

|
oo

c(‘bﬁ-ﬁj) m,jl + g c(zczl'r+q:-r+61) m,
b a
+ 3 0(20!1T+q)T+5J) mys +3 c(2cgl'r-¢1'-6i) L

b
+ 35 c(2cvl1'-¢'r-6j) m

a
33 +35 C()-l-alT+df‘T+Gi) m),

+ g c(halT+¢r+bj) my), + 2 c(hal'r-\lrf—éi) m; s
+ -122 c()-chlT—q)T-éj) m'j5 + 2 c(6ql'r+\lr"r+éi) m,

b
+3 c(6orl'r+q>r+6'j) Mg ¥ & c(6ql'r-1!r'r-éi) m,

2
+ 2 c(6o, r-%r-5,) m
2 1 37T

(3.102)

_)\—_ A 1]
b[A3( 2 jwj e3) + 33(Bh 3 )] s(¢#+6 ) + uy, * 33 13 + 3& 23
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= g s(¢#+6J) By + % s(201T+¢T+61) ny,

b
+ 5 5(201'1'+¢I>r+6'j) n':,2 + e

In the above equations, the coefficients m and n are functions
of the parameters of the problem and are not given here.

Resonant motion will occur in the e3 expansion (under the
assumed condition of no resonance in the ¢ or e2 expansions )

when @ 1is equal to one of the frequencies appearing for the first

time on the right side of Eq's. (3.102). This includes

P= by £ ¥
(3.103)
¢ = 601 + @

Again eliminating the cases corresponding to zero or negative average

spin rate, oy these resonances can be seen to correspond to

~
=

wy 3“1
Wy = 39 (3.104)
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wl + we = 6qi
w) - 0y = oy

The stability boundaries for the first two cases, using

Eq's. (3.66), (3.81), (3.91), and (3.103) are given by

o = % [E& + &b, + 33A3 + ...] (3-105)

where only A3 takes on different values on the two boundaries of the
instability region, so that the width of the region is measured in
terms of e3. A similar form of solution for the instability regions
described by the third and fourth of Eq's. (3.104) occurs and the width
of the instability region is proportional to the third power of the
small parameter €.

It is evident that the asymptotic expansion process, when
carried to the nth power §f ¢, will describe additional instability

regions with frequencies.

i

i nql ’ (i= 1,2)
(3.106)
wl + ub = 2nqi



and that the width of the resonance instability region will be

proportional to en.

3.10 Comparison with Previous Anslysis

The previous sections established the approximate location of
the instability regions of the unsymmetrical spinning rigid bhody
(see Figure 3.3) and included analyses to define some of the insta-
bility regions in greater detail.

The only previous analysis known to have been performed on
this problem is that of Kane and Shippy [12] in which a method due
to Cesari [20) is used to check the stability of motion of the
unsymmetrical spinning body for specific spin rates and ratios of
moments of inertia of the body. This previous analysis states that
approximately 230 points were checked, and on the basis of these
points, sfability regions were defined. Two of the stability charts
of Reference [12] are reproduced on Figure 3.6, corresponding to
average spin rates given by oy = 1 and Qi = 5. On Figure 3.6 the

nondimensional parameters Ki and Ké are given by

Ki = Eig =1+ ¢-1
(3.107)
C-A _r-1
K ="F = 1ite
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FIGURE 3.6

STABILITY CHARTS OF REFERENCE [12]
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Figure 3.7 shows a replotting of these stability charts of Reference
[10] in terms of the nondimensional parameters used in the presént
research ~- r and €. The stability boundary on the lower portion

of Figure 3.7 can be seen to be a function of o:l, the aversge spin
rate, and this boundary waes shown in Reference [12] for o =1

and ql = 5. Superimposed are the stability bounderies predicted by
the requirement that the Hamiltonian be positive definite, as given
by Eq's. (3.21). Comparison of the boundaries predicted by Reference
[12] with those of the present research indicates that the requirement
that the Hamiltonian be positive definite at all times may exclude
small regions of parameter space in which stable motion is actually
possible. This is not unexpected since the requirement that the
Hamiltonian be positive definite was seen to be a sufficient
condition for stability to exist, but not a necessary requirement.

By comparison with Figure 3.3 it can immediately be seen that
additional regions of instability not shown on Figure 3.7 are
predicted in the present research. Specifically, additional regions
of instability are expected in the case of ¢ < < 1 for an average
spin rate of one,. o = 1, with moment of inertia ratios, r, of
approximetely 1.39, 1.73, 1.83, and 1.94% and for @ =5 with moment
of inertia ratios of aspproximately 1.64, 1.82, and 1.99.

Figure 3.8 shows the estimated regions of instability for

oy = 5 and small ¢, as defined by the methods of the present
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research. This figure shows the locations of four regions of

resonance instebility, corresponding to

ne

]
Wy =20
(3.108)
U)l + (.U2 = qu
uﬁ - ub = 2ql

The first of these regions, referred to as the region of principal
instability, corresponds to the instabilility region shown on Figure
3.7, and physically corresponds to the region in parameter space in
which the body is spinning about an axis of intermediate moment of
inertia. The region shown in Figure 3.8 is the first approximation
given by Eq. (3.47), and can be seen to agree closely with Reference
[12] for small e. Improved agreement at larger values of e
would be expected if a higher order approximation were used, since the
width of the region would then be corrected by terms proportional
to ee and higher powers of e.

The first approximation of the region of resonance instability

for ® :’Eqi is shown in Figure 3.8, using Eq's (3.42). As expected,



the width of the region is approximastely proportional to e2 and
consequently is very narrow for small e.
The locations of instability regions for which El + 62
= 2ql are shown as dotted lines. As discussed in the previous
section, the width of these Instability regions is a function of
the type of initial disturbance to which the body is subjected.
Figure 3.9 presents a similar stability plot for o = 1.
The remarks relating to Figure 3.8 are again applicable and in
addition, several added types of instability region are found to
exist. Three regions are seen to be superimposed near r = 1.0,
including a region of principal instability corresponding to 62

~

=q as well as one for which w0, = ey

(0}

A region corresponding to 751 + '032 lml is seen to appear

in Figure 3.9. Its width was found to be a function of the initial

disturbance as previously discussed and as is in general the case

nQ

for instabilities near El + ?1-)2 2ncyl. An sdditional instability
region is also seen on Figure 3.9 for which 71_)1 = 3ql- The

width of this region has not been defined, but it is expected to be
very narrow as its width was previously shown to be proportional

to e3-
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SECTION IV
SPINNING SYMMETRICAL SATELLITE IN AN ELLIPTIC -ORBIT

A circular orbit is often assumed in satellite stability analyses
due to the inherent simplicity of mathematical form. On occasions the
orbits are elliptic, obtained intentionally or unintentionally. When
elliptical orbital motion is considered, the equations of motion describing
the attitude motions of a rigid body are found to ineclude periodic
coefficients.

A rigid spinning symmetrical body in an elliptical orbit is found
to have an equilibrium position in which the spin axis is perpendicular
to the orbit plane. A previous analysis of this problem [13] dealt with
the attitude stability of motion about the equilibrium position, but
the method of analysis that was employed was restricted to the linearized
system and included only checks of the stability for specific values
of the parameters of the problem. In fact it is the same method as
used in Reference 12. Beletskii [28] used a KBM method to study the
case of a nonsymmetric satellite in an elliptic orbit. His case is diffe-
rent than the case discussed in this section in the sense that Beleiskii's
analysis is restricted to one-~dimensional libration in the plane of the
orbit about a configuration of no spin relative to an orbiting system
of coordinates.

The analysis presented in this section gives an analytical solution

for the stability characteristics of both the nonlinear and linear systems
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in the neighborhood of the equilibrium position, for relatively small
orbit eccentricity. An analysis based on the methods discussed in

Section ITTI will be employed.

) Orbital Motion

The orbit path of the center of mass of a rigid body traveling
under the influence of an inverse square gravitational field is known
to be a conic section. The gravitational attractive force is assumed
equal to K/R2 where K is the product of the earth's mass times the
universal gravitational constant and R is the radial distance between
the earth's center of mass and the satellite center of mass. The
assumption of a uniform inverse square gravitational field is an ideal-~-
ization equivalent to the assumption that the earth's density is a
function of radius alone. In many satellite systems the desired conic
section is an ellipse, implying periodic orbital motion.

According to Moulton [29)] the elliptical orbit parameters can be
expressed as periodic functions of time consisting of series of terms

in increasing powers of the orbit eccentricity, €. These relations are

=]
1}

R {1 -~ {cos T)e + % (1 - cos 27)62

+ % (cos T = cos 3T)€3 + % (cos 2T = cos lﬂ')(—:lL + ...}
(%.1)

@
1l

T+ 2(sin T)e + % (sin 2T)€2 + % (- sin T

+ ;2 sin 3T)e3 + %ﬂ (-11 sin 27 + ;%3 sin 1L'T)e)+ + eoo



in which Rs is the orbit semimejor axis, © is the angular position
of the satellite measured from a radial line through the perigee and
T 1is the mean anomaly which is a nondimensional quantity related to the

time, t, and the orbital periocd, T, by

T = 2¢ t/T (k.2)
The orbit period is L300

T = 2n xM/2 RZ/E (4.3)

The series expansions for R and @ in powers of the eccentricity
€ , Eq's. (4.1), have been shown to converge for value of € up to
0.667 [29]. This region of convergence is more than adequate for the
present study, since the eccentricity of earth satellite orbits seldom
exceeds 0.1, and the principal interest is in nearly circular orbits
possessing even smaller eccentricity, so that one can Jjustify treating
€ as a small parameter.

The influence of the attitude motion on the orbital motion of
the satellite is negligible when the satellite dimensions are small
compared with the distance from the center of force to the satellite

center of mass.

L,2 Coordinate System

An orbital frame of reference with its origin at the satellite

center of mass and its orientation as shown in Figure 3.la is chosen.
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Axis a 1s along a radial line from the center of force {center of the
earth) to the center of the satellite, axis ¢ is perpendicular to the
orbit plane, and axis b is perpendicular to axes a and c¢ so as to
form.a right hand system a,b,c. (Note that axis b is not always
directed along the orbit path as it was in the case of a circular orbit,)
Hence, a, b, ¢ forms an orbiting frame of reference in which a and b
are the radial and transverse coordinates of planar motion. The orien-
tation of the satellite relative to the a, b, ¢ reference system is
obtained by three successive rotations 92, el, and ¢ as shown on Figure
3.1b.

The 2z axis is taken as the symmetry axis and the mass moment
of inertia about this axis denoted by C whereas the mass moment of
inertia about axes perpendicular to 2z 1is denoted by A. The analysis
of the symmetric case is simplified by using the €, 1, (, axes. The

angular velocity components of the body along these axes are

. . 21
0§=-® s6, -el——T-[-®' s6, - ei]
on
Q = -6 co, 0, + b,co; = T [-0' co, s6) + 0} co]
_ _ . . e _ &t. '
QQ—QZ—@ce2cel+62591+w—T[® cp, c8; +

+ eé 58, + ']

(b.4)
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where thé dot designates differentiation with respect to time and the
prime indicates differentiation with respect to «~ .

The position of the satellite symmetry axis is described in terms
of the angles 91 and 92. All possible positions are described by using
the ranges -% < el < -’25- and =t < 92 < xn, Analogy may be made
to the description of points on the surface of the earth, with 92 the
longitude and ©, the latitude. At the points 8, = %- (correspond -
ing to the poles) the coordinate system is singular in the sense that

partial derivatives with respect to 92 are not defined.,

4,3 Energy Expressions

The kinetic energy associated with attitude motion of a symmetric
satellite can be written in terms of the angular velocity components
along the g, M, { axes
2

A(Q‘g‘ + Q%) + %—cgg

=

=

i
o=

n

_glt.. v ' 2 - 2
- 5 { A [(el + 8 see) + (eé 8y @' ce, sBl) ]

+ G (o' + 0} se; + @' co, cel)e} (k.5)

The gravitational potential energy associated with attitude motions

of a symmetric satellite reduces to

= -3 K 29, o2
PE = -2 S (A-0) s%8,c%e, (%.6)
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Note that the translational kinetic energy of the center of mass and
the potential energy due to altitude have been omitted. This again
implies uncoupling of the attitude motion and the orbital motion and

will be referred to as orbital constraints,

4, b Equations of Motion

We shall seek to derive the equation of motion for a symmetric

satellite by means of ILagrange's equations. To this end we write the

Iagrangian
L = KE PE—EEE—{A[(G'+®' )2
= - S P 1 597
t - 1 2
2 3K 2, 2
+ @ c6, cel) } + 233 (A-0C) s 8, ¢,

An inspection of Eq. (h.?) reveals that the generalized coordinate
¢ does not appear in the Lagrangian., Furthermore it will be assumed
that there are no nonconservative forces present so that ¢ is a cyclie
or ignorable coordinate. ZFurthermore, R and ©® are known functions

of the mean anomaly T . Consequently, Lagrange's equations of motion are

& AL ! T
dr <: . 8, 0
Bel 1
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a (L _ 8L, _
(:ae' =0

dr 38,

(4.8)
4 L
dr B¢':>

The third of Eq's. (4.8) can be integrated immediately to obtain the
generalized mamentum about the spin axis, p(p , Which is an integral

of the system and should be regarded as a constant quantity

& = g.;_c_(wl + 8! s

=TI ' _
Pm =5 3o 589, + @' co, cel) const,

(4.9)
This integral can be used to reduce the degree of freedom of the system
by one, using a procedure known as the ignoration of coordinates intro=
duced by Routh [l], [31]. According to this process the Routhian of the

system can be devised in the form

_ oL+ _ _ 2n '
R—L-aw,w—L prm

2
= _21(_ t 2 t - 1 2

2 1
- 4 r + 247 eé s§; + 24 r @' ch, coy

(1 -r) s, c, } (&.10)
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in which
C © 11
r =z ’ £ = 2xC (h' )

and where Eq. (4.9) has been used to eliminate c«'.

The equations of motion become

& ragy . 3 _ o
dr aei 30,
(k.12)
a (:aai .8 |,
dr aeé 392
which can be written
o + oL (2-271) + 8, (4r-1-2)
1 2 1
- 1 - - 1 - -
= 8} [2(1 <8, c261) 8} 6, ¢ 2 (1 cel)]
s6 s8
ke % co. oL 2
+ 8 [z r(l - ¢, 5y ) - (1 - e 8, €6y 5, ) (1 + 2¢%)

50
- (3 + % e2) (1 -r) 5292 c8y gzi ]

+ e { cT [-49é c8, 0291 - 234r 092 Sel + 0} c292 86, ¢0

- 91 -1) &%, 50, cop | + st 2 50, | }

130



=

+ ¢.:2 { c2r [- SBé ce2 ceel - gz r c92 sel

+ T 0292 80, cel - %l (1 «1) 5292 50, cel]

+

sar [588, |} + 0 (e?) (.13)

9'2' + ei(,e,r - 2) + ee[zr + 3r - 4 + ea(gr - 1_3.

= a" o a8n [ N - 2
= o) [1 e 911_] + o] |2 50, co, 6} 2(1 c6, c“0,)
s6,
+ gr(l - cel)J+ 92!:,0, r(i - co, —-9-2-
+ (3r ~ 4 + 2 62 r - i3 62) (1 - co ‘-'29 ie'g)
2 2 2 1 92

2 1
+ ¢ { s-rl: - 2ce2 sel cel ] + c-r[ l&cee c el el
- 24rse,co, + (13 - 9r) se_ co, cop ]}
2 “Y1 : 2 9 1
+ 2 {s2 [- 5 cp, 56, cB ] + 27 [5 ch cee 8!
€ T o 591 €5 2% 5
5

1 2 3
- $4rs6,ce + 2(41 - 27r)s92c62c91]} + 0(e”)

The time dependent orbital motion given by Eq's. (4.1) has been ineluded
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in the above eguations and all terms through the second power of the

orbit eccentricity have been included. Note that linear terms in the
variables and their derivatives have been added and subtracted in the
above forms of the equations of motion so as to render them in a form

that will be useful in the subsequent analysis,

k5 Dynamic Equilibrium Positions

Inspection of the equations of motion, Eq's. (4.13), shows that

they are satisfied at the position

This then is a dynamic equilibrium position at which the spin axis of
the symmetrical satellite is perpendicular to the orbit plane.

A number of useful observations can be made regarding the form
of the equations of motion,Eq's. (4.13), in the neighborhood of the equi=-
librium position. The terms grouped on the left are products of constants
times terms in the first power of the displacements and their derivatives,
The terms on the righl are grouped in terms with constant coefficients and
terms with time-dependent coefficients. The terms with constant coefficients
can be seen to be very small in the neighborhood of the equilibrium position,
their magnitudes being proportional to the third and higher powers of the
displacements, el and 62, and their derivatives.

The time-dependent terms in Eq's. (4.13) are all multiplied by

powers of ¢ . The coefficients of e to the first power consist of
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products of the displacements and velocities to the first and higher
powers multiplied by terms harmonic in time and of frequency 1. The
coefficients of 32 on the other hand possess harmonics of frequency
2, ete,

" If the equations of motion are linearized in the neighborhood
of the equilibrium positon (i.e. powers higher than the first in the dis-

Placements and their derivatives are discarded), they take the form

of + oh(2 - 2x) + o (4 - 1 - 2¢%)

I

e{c'r[-heé - el(2zr - ll-):l + S"'[Eeg:‘}

+ 32 { CET[

se3 + 0, (T - 227 s2rf5e,|} + o(e?)

(k.15
eg + ei(gr - 2) + ez[gr + 3r - L4 + ee(gr - ?)J
- e{c{hei + 6, (13 - or - QEr):I - sT[eel]}
+ & { cef 5oy + o, (2 - &r - 2um)]
- 821'[591]} + o(ed)
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4.6 Iiapounov-Type Analysis

Application of the Liapounov method to determine the stability
of motion of the symmetrical, rigid body in an elliptical orbit in the
neighborhood of the equilibrium position will now be undertaken. The difference
between the Hamiltonian function, H, and the Hamiltonian function evaluated
at the equilibrium position, HE s Will be used as a testing function,

The Hamiltonian function has been shown [1 ] to be related to the

Routhian by

- AR AR A
H = 36, 1 T 30 9 - R
ox2A 2 2 2 2,2 2
= 1 1 - '
= 7 [jel + 0" cey 0'" (s 6, + c 0, s el)
> KT° 1 2 2
+ g r = 2g4r0'cs, cd - 3 — (l - r)sH,cH ]
2 %91 e B3 ) 1
7~ R
(4.16)
so that
onA 2
HE=_é— (21‘-221‘@') ()4'-17)
T

Introducing the time dependent motion, we obtain the testing function

2
_ _ en‘A 2 2 2
V= H - H = &5 { 8;" + 81" o

X 1

- (5292 + c292 seel) [1 +(het) e + (2 + 7 027)32
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+ '12;(9c'r + 23c3'r)e3 + ] + 27 (1
- ©cb, cel)_ [1 +(2cr) ¢ + -g(cE-r) e+ %; (- er
+ 13 c3-r)e:3 + ] - 301 - 1r) 5262 cael [J:

+ (3ene + %(l + 3c2r)e” + %(2TCT

+

53 c3r)e>  + ]} (.18)

As before we will define K E¥* as the portion of the Hamiltonian
which is quadratic in the velocities. The remaining terms in the

Hamiltonian, defined as the dynamic potential U, are

2
2n"A 2 2 2
U=?-{-(sez+c92$el)[1 + (4 er) ¢

+ (2 + Teene® + F(9er + 23e3n)ed + L]

+ 2gr(l - 092061)[1 + (2er)e + g ca-re2

+ %(- er + 13 031')63 + ] - 3(1 - 1) 5292 czel [l

+ (3CT)€ + %(l + 302'-7')82 + %(27(:‘1‘

+

53 e3r)e” + ...]} (+.19)
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It is cvident that KE* 18 positive definite in the neighborhood
of the equilibrium position, so it is only necessary to check the positve
definiteness of U <tc determine the pnsitvive definiteness of V. Again

applying Sylvester’'c criterion we corclude that V i3 veositve definite

if
§:g~’ > 0
3] !
(k.20)
_BEE ﬁ - (iu__>2 > 0
3. 265 36,29, .

which gives the following requirements

4r - 1 + ¢ 07(2 L r - h) + 62[_ 2 + car (g-z r

N + o) > o (4.21)
,er+3r-)++ec-r(2!,r+9r-l3)+32[ gr
--]-é-3+ c2¢(gzr+%lr-%)]+0(e3)>0

Por smell values of the orbit eccentricity e we can determine the

boundary of the region within which V is positive definite by neglect-

ing terms in e2. For small e +the corresponding approximate inequalities
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4r > 1 + 2¢ cr
(k.22)

g4r > 4 - 3r + ¢ cr (5 - 3r)
resulting in three inequalities that must be satisfied for V +to be

positive definite for all positive velues of e . These inequalities

have the form

(k. 23)

- 2>
2 bk - 3r * o 5 _ 3) _—+ for 3

<3

R B\

The resulting stability boundary is shown on Figure 4.1, In the neighbor-
hood of the equilibrium and in the limit as ¢ approaches O, ¢ approaches
o + 1 where oy is the ratio of the average spin rate to the average
orbit angular rate as used in the previous chapter, Consequently it can
be seen that in this limiting case the stability boundary is identical
with that given in Section IIT and in References 9 and 10.

The second part of the Liapounov stability theorem states that,
given a positive definite Lispounov function, the motion will be stable if
the following inequality can be satisfied

It W oat = Jt - Hy) at = 2 Jx { (5292

dt

t, t, at P Y
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Note: DNonresonance Oscillations are Stable for Configurations

to the Right of the Stability Boundary

L
3 -
EH jJO
Q‘E- c\'\-:l 2
L
-
Orbit
Eccentricity, e
1 4 S
0 i
0 0.5 1.0 1.5
r = C/A
FIGURE 4.1

STABILITY BOUNDARY DICTATED BY POSITIVE DEFINITE HAMILTONIAN
SYMMETRIC, SPINNING SATELLITE IN ELLIPTICAL ORBIT
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0262 5261) lgll- st) e + (l)+ 527)e2 + % (9 st

-+

+

69 537)e> + ...] - 24r (1 - co,ce) Ee sr) e
+ (5sene® + Fl-sr + 39830 + L]

+ 3(1 - 1) s292 czel [(3er)e + (9 s27) &&
+ g(er + 1930 + ..} at < u(e

2 2, .2
o, + 01° + 84" ) (k-2k)

1

In order to investigate this integral, one must know the form of the
solutions, 8, and 92, and in particular the frequency components if

the solutions are periodic. If the nonlinear terms are neglected in

the equations of motion and a correspondingly reduced Hamiltonian function
is used, one can apply Floquet's theorem as was done in Section IIT and

in Appendix B. When this is done and following an analogous procedure,

it can be shown that, for ¢ small, the instabilities occur when

~ i n
1 T 2

~ 1
w2 = -2— n (n=l,2,...) (h'es)
w ot owy, ¥ oD
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*
where wy and are the natural frequencies of the linearized

¥
system for ¢ = O

Wy =/b+/1;2_-_:_ w, =/ _ b2--c (%.26)

and

g'2-(-,(7,2r2 + 6g4r + 3r - 9)

o'
1

(k.27)

(¢6r - 1) (gr + 3r - 4)

o
n

When the complete nonlinear equations are taken into consideration,
Floquet's theorem is no longer applicable and other means of determining
the form of the solution must be employed. In the next section, the non-

linear equations are analyzed using an asymptotic expansion and it is

found that the solutions, 6, and 8,  can be written

©

8, = Z & cosl:(.e +omy +on o) + %mn]
4> m, n =0

(k.28)

8, = Z b sm[ + +

2 pm SO0 my ot ong)r 4 5;zmn:,
Lymy n=20

#The true natural frequencies are obtained by multiplying Wy and
wy by 2% .
T

140



where the anmn are constants or slowly varying functions of time, Also
4, my, and n are not all zero simultaneously in the region where the
Hamiltonian is positive definite, and the sum of m plus n 1is equal to
an odd integer. Our current interest is in the case of small oscillatioﬁs
about the equilibrium position and small orbit eccentricity, and under these
conditions
by T owg s Iy T ow (b.29)
Substituting Eq's. (4.28) into Eq. (4.24) it can be seen that the
integrand includes terms that are composed of el raised to an even
power times a trigonometric funetion with frequency equal to an integer,
The value of the integral will be bounded when no resonance takes place
and may be bounded or unbounded when a resonance takes place as in the
previous cases, For small amplitudes of oscillation and small ¢, the form
of the integrand of Eq. (4.24) is such that resonance can be seen to

occur 1in the neighborhood of positions where

wl = 2’% ) (P:Q""l:a:"')

(%.30)
Ub = é%.' > (P:Q:=l:2"")
+ mw, + nw, = g s (m,n,p,9=1,2,...)
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Inspection of the above equations shows that the nonlinear system
theoretically has resonance regions in the neighborhood of any region
of parameter sface. This has previously been noted by Bogoliuboff and
Mitropolski under similar circumstances:¥ "Because p and q may take
up all possible integral values, the set {p/q} is compact and hence
the ratio p/q » with proper choice of the numbers p and q , may
approach any given nuwber, "

As a result of counsideration of the nonlinear terms, additional
resonance regions termed 'nonlinear resonance regions", that did not
occur in Eq's. (L4.25) for the linearized system are found in
Eq's. (4.30) for the nonlinear system. We will classify the resonance
regions given by Eq's. (4.25) as "linear resonance regions”. When oscilla-
tions near the equilibrium position are considered, the nonlinear terms
with the largest magnitudes are third power products of the displacements
and their derivatives. But even these terms are small since they include
coefficients that have the amplitude of oscillation raised to the third
power as a factor, and this amplitude can be made arbitrarily small
by limiting consideration to sufficiently small smplitudes of motion
about the equilibrium. Also, it is shown in the next section that when the
nonlinear terms are considered, the amplitude of motion affects the
frequency of oscillation of the system. Consequently it is found that &
system which experiences one of these "nonlinear type resonances" when

oscillating with one amplitude will increase its amplitude of oscillation,

% N.N. Bogoliubov and Y.A. Mitropolski, Asymptotic Methods in the Theory
of Non-Linear Oscilletions (Delhi, India: Hindustan Publishing Company,

1961), p. 198,




causing a shift in the system natural frequency until a condition of
bounded periodic motion is reached.

As a result of the above discussion, our greatest interest will
be placed in the resonance regions dictated by the linearized system.
The approximate locations of these resonance regions when € is small

are given in Figure L.2.

o Asymptotic Analysis

Inspection of the complete, nonlinear equations of motion, as
given in BEq's. (4.13), shows them to be arranged so that the linear
terms with constant coefficients appear on the left.

Terms appearing on the right side of Eq's. (4.13) are grouped
into (a) the nonlinear terms with constant coefficients and (b) the
terms with time-dependent (periodic) coefficients. The terms with
periodic coefficients are all muwltiplied by the small parameter € +to
the first or higher power, so that an asymptotic analysis similar to that
used in the previous section appears to offer promise of furnishing a
neaningful solution. However, the nonlinear terms with constant
coefficients present a somewhat different problem. Consequently, the
analysis is presented first for the linear system with constent coefficilents,
next for the nonlinear system with constant coefficients and finally for
the complete nonlinear periodic system. This last analysis is then

specialized to the linear, periodic system.
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4.7.1 Unperturbed,* Linearized System

Designating the equations of motion with the right side terms

set equal to zero as the unperturbed linearized equations we obtain

1 —
el + Bleé + 8291 = 0
(%.31)
1] 1 .
62 + 8391 + ehe2 = 0
in which
Bl = 2 - 4T
B, = £r - 1 - 262
(k.32
83 = 4r - 2
B, = £r + 3r - h + 62( g r - %2 )

The naturel frequencies of the unperturbed linearized system are given by

*Note that unperturbed system should be regarded in the sense of a
constant-coefficients system.

¥*Different symbols have been used for B8, and 33. This is consistent
with the notation of the previous chapter.
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w = {82 - :l‘ ~ B (4.33)%
cap[ (B T P e 1YY e

Also, the ratio of the amplitude of 92 motion to the amplitude of

0, motion satisfying the unperturbed linearized system is

1

L= w, = 82 _ B3wi
. = — = =2 2

(1=1,2) (k.3%)

4.7.2 Unperturbed, Nonlinear System

Designating the equations of motion with the periodic terms set

equal to zero as the unperturbed, nonlinear equations, Eg's. (4.13)

lead to

" : _ r .2 o 1
8, * B8 *+ B8 = °{92[°2 + 6@ - 507)

- 8,8, - }15 eg + 91(%E Lr - %) - e‘ieg

+ %eieé] + el[eg(%zr -k o+ 3+ 2 P
R At T R Y

+ eg(- -gl-gﬁr S _16§_e2 - %ear)

*The gymbol G% differs from Wy in that autonomous linear terms
in ¢ have beén included in Eq's. (4.32).
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L 1 2 y 2 22 1
+ 91(- -1—2621' + 1—5-‘" EG) 6192(- EZI‘
+ % - 2r + }BE- 62 - 3 62 I')] + }
(4.35)
1t [ — 1" 2 l ll' 1] 1
B * BBy f B8, = "{92 (6 - 3087) + o [29192
2 ir 2 by 3, 22 1 .
-8 * (3 - 2)8) - 308 8k * FH

2 1 L 2 8
+ (.3. - §1J:;zr)el] + ee[eg(gzr -3 *toer

-1§3ez+3r32)+e§(%zr-h+3r-]é—3€2
- % ¢2 r) + ei (- %E Lr + % -r o+ 2
-%ezr)+eieg(- -]l“—g-;zr+§--2r+l‘3ﬂ'°le:2

- 3 62 r) ] + ...}

In the above equations, the sine and cosine terms have been expanded in
series form and all terms through the 5th power of the coordinates and
their derivatives have been retained. Terms in the Tth, 9th, and higher

odd powers of products of the displacements and their derivatives have
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been neglected as they are small in the neighborhood of the equilibrium
position. However their influence on the resulting solution will be
discussed at the end of this section. As before, only terms in ¢ to
the second power have been included. In addition, the left side of
Eq's. (4.35) has been multiplied by a factor, o.

The factor ¢ included in Eq's. (4.35) can be considered to
be a parameter of the problem, so that the solution will be an analytic
function of g and will be the desired solution when o = 1. Follow-
ing a procedure suggested by Kryloff and Bogoliuboff [25] and used by
Cunningham [32 7, an expansion will be made as though o was a small
perameter. However, in this case, ¢ 1is not a small parameter so
that the expansion can be expected to converge to the correct solution
only if it can be shown that the coefficients of successively higher
powers of the parameter ¢ became extremely small. To this end we can
consider an assumed solution for which the frequency of the principal
oscillation is nearly egual to a natural frequency of the unperturbed,

linearized system.

2
el = g cos § + u,,0 + ulzc + e
o, = alp, + o + gax + ...)sin &
e i il i2
Fouo FouoE + ... (%4.36)
21 22 °
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- 2
3 = (u’i + 810 80 F o) + 0B

where )‘i and w; 11°

u22, etc. are selected to include all terms of frequency other than §.

are obtained from Eq's. (4.34) and (4.35), and u

The subscript i will be dropped throughout the remainder of the analysis

of the nonlinear, unperturbed equetions. Substituting the assumed solu-
tion into the equations of motion, and reteining all terms through the

second power in o,¥ gives

a {' 62 + )\u)pl + Be } c®d + o { a [-2-(5Al + Bl()\Al

+

AW )] e + uyy + Byus, 4 32“11}

+

+

)\2(_0)]0§ +oul, foBuwl, 82u12} + 03{}

+

= g { a3 [dllcé + dlac3§:l + a.5 [ dl3c§

+

d;)c38 + dlscsﬁj} + o {aS [Al(delc§ + dy,c38)

+

u'
21
AM(dysed + d,e38) + == (dy; + dy.028)

¥Although it appears that the equations are separated according to
their order in 50, one should recall that u;._ 3 and u; 3 contain
tems in o, o, ...
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+ ll%dz,.{s.?(f + E-Jai (dg + d2902¢§)] + a’ []}

+ 0'3 {} + ... (%.37)

a{- )\062 - 53'(5 + th}sé + o{a[-E?f)Al)\ - 527\1

Bydy * Bh"l]sg *ougy + Baujy 4 Buuzl}

2 - -
cg{a[— )‘Al' 2xlwA-2- wekg - B3A2

+

+ Bh"e]s‘b *oug, v Bug, 4 Bhuee} + o {}

+ ... = 0{9.3 [ells§ + e1253§5:' + as [eBsé

+ e,83% + e15s5§]} + 02{a3 E&l(ezlw + e2253§)

u u!
21 1 1 21 —
+ xl(e23s§> + e2h53§) = ( 5 -~ 5 c23) + = (- ws2%)
ul u u
11 21 11
+ = (e25 + e26c2§) + = (e27 + e28c2§) + = (e29s2§)J

e[} v B

where the constants introduced in the above equations are

dy; = 11?[7\3“7 * "2(%‘:" - b+ 3r o+

PNo
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43

dyy

45

it

26 + B2 - $27) - HWP3(Fer
FETY

ljf[- 5 - Besr - b o+ 3 o+ geer - -g—ee)'
A-u-)(2-%£r)-}\2532+(%,¢r_%_%62)]
Fl-b 2 ¢ 9B (Fper - 5) - 0%+ 0%
Ah(-lz‘lrzr+§-r+}é§e2--g-e2r)+ (-:,]E-Eﬂ,r

% + %—ez) + )\2(-%'_-2—2 + % - °or + }33-32 - 3e2r)]
%[{f}\w+ SKE(%-EﬂI‘ —% + )\3-w+%)\262
)\h(-—-g.@r+)+-3r+l?3-€2-%e2r)- (le‘l?zr
-§—+%e2) Xz(—%£r+%-2r+?82_332r):,
%.-6['%2')‘56 * )‘_(%'Ef'r - %) + Ao+ —g—xaﬁz
kh(-%ﬁzr+§-'r+%§e2-—g-e2r)+(~.-i%3,e,r
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vl

29

11

13

it

i

+

3r+-§9-er —gee) + (%‘-,(?r - 2 -492)]
-21-[2{03(2 - %-Zr - %AE) - xe (%zr St
3¢+ 3fr- 2 ¢+ (Rar -2 - ke%)
11;[-162-» 3x263-6(%zr -2+ 2)F)

)\3(%£r -8 + 6r - 13° + 9re2) + )\(-2]121"
b+ 3r - }2§-e2 +§e2r)]

i—f-;@‘? - 7\26-6(-21-2:: - 2 + 2w
xB(%Zr—%+2r-l§3-ez+3re2)+)\(%’-Er
’++3r--l§3—e2+§eer‘}

H[305 - B - 52 ks - b

ME o+ A (—%h-zr + == 2r + }3-3-62 - 3¢°r)
x(-%ﬁzr+g--r+-lé—3-e2-%eer)+7(3(--]]_'-2—zr
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C1k

15

21

22

23

I

%-2r+]é—3 -3e2r)]

‘5)\2 - xsl(-%‘-ﬂ-zr + %O- - 2r + Jé_3€2 - 3621‘)
M(-ggr o+ b -3 +12_3€2-g-2r)
)\3('1_]5’?'1"" -2r+l§3-2-332)]
%[%x&e - "xu—E(%-glzzzr %’»5)
)\2+l5(_mgr+%-gr+%ea--35-321‘)
;\(_Elu-zr+ -r+%3-e2-%e2r)-7\3(-'ll§£r
% - or + -;—3-e2 - 3e2r)]

Fl-5E + »® - &R+ 2) ]

%[-5)@- 22 2—21—'+2:|

%;!-6@-3?62 (§Zr-4+3r-12—3€2




P B e 3dar e @ nE e 9 )

ey, = %[-257\ - 3-(52 + (%zr - 4 + 3r - 1'2-3-e2
+ gezr) - )?(%f,r -8 + 6r - 13¢5 + 9e2r):‘

s = 3|28 + AL -2 - >\2:|

s = H[om ¢ BE o2 v 2]

epr = -;—’fa@' + (%ﬁr - L o+ 3r - }22-62 + ge‘er)
+ B(Far - 8 + 6r - 138 + 962r)]

e, = %-[2)&6 + (%.er - 4 + 3r - 1?3-32 + ~29-61')
- ;\2(-23-‘-11- - 8 + 6r - 136 + 9621')]

e29=2-%£-2x®2+x(%‘-zr-4+3r
- %_3.32 + geer) (4.38)

The first term in each of Eq's. (4.37) is zero by virtue of

Eq. (4.34). By equating the coefficients of ¢ and applying harmonic
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balance, the following four equations are obtained

— — 2 L
Al(le -~ 2w) + Al(elm) = a%d;, + a d13
(-8, - 280) + A (R, - B°) = afe, + a'e
1V73 1ML 11 13
(4.39)
" ' _ 3 2 5
Wy o 8wy, fo8uy, = oa (d12 + a dlh) c38 + a d15c5@
v, + Bul. + B = a3(e + ae ) 838 + a’e s5%
21 °3*1 Lol 12 14/ B3 15°7°
From the Tirst two of these equations we obtain
2 -2 2 —
L - 2 (4, + = dl3)(8h - W - (e *+ & el3) B W
Ay = — ) ot -
(8,n - 2w)(m, - ©°) + 8w (B, + 2:\w)
1 b 13 (4.140)
2 - 2 -
* (e - 20)(s, - ©°) + 85 (85 + 2))

The second two of Eq's. (L4.39) are satisfied, neglecting terms in ¢

arising from the derivatives of ull and u21’ by

o
n

11 Ay 38 + A, c58
(4.41)

=}
fl

o1 A3 3% + Ah 558
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in which the coefficients are

~

—2 2 - 5
A = a3 (Bh - %uw )(612 + & dlh) - 3mBl(e12 + a elh)
! (B, - 95°) (8, - %B°) + 9w Ae
-2 -
D e R e
2 (8, - 25%°) (8, - 25m °) + 25623133
(k.42)
- (a 2 —2 2
o - a3 3m83(d12 + a dlh) 7fm_(§2 - 9p )(e12 + 8 elh)
3 (8, - 98) (s, - 95°) + Iuen
— -2
ALL ) a5 52).836.15 + (82 - 25w )el5
(8, - 255°)(8, - 256°) + 25 8,

We see that the presence of the nonlinear terms, in the first approx-
imation, introduces a correction to the frequency of the principle

oscilation, A in which the amplitude squared appears as a factor.

l}
Similarly Kl includes a2 as a factor and the additional harmonic

2
terms given in ull and u21 have amplitudes in which a” appears

as a factor. Consequently for small motion about the equilibrium

position, these terms are very small.

*
Equating the terms of Eq's. (4.37) that are proportional to 02 ,

introducing the results of the first approximation, and applying harmonic

balance we obtain the following four equations

*Terms arising from the derivatives of vy, and Usq have been
inecluded.
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_ - o 2
LBy - 20) + A (Bw) = A - B4 *o@ [Aldzl
A
3 A3 _ 1A 1M
* Mdos 5 & Y9 t 3 ad27+§'a—d29]
+ aF I_]
_ 2 o — 2
Ae ( = 0'3 - 2)\(”) + 1\2 (F)_’_ - o ) = )\'Al + 20"11 Al + a [AleEl
-2 -2 —
9 w 3 w 3
MERSL TR el S S e T R
i 1 L
+ §5A3e.28 - 5A1e29] + a []
ul oo By, oSy, = @’ {°3§ [Al(d22 + 1Bwh; - 3/A5)
12
3w 5 ® 1
oMby v T At 3 2 A v o5 Ady,
1 _
+ é Ajd g + o A2d29] + 58 [Al(SOAew - SBlAh)
® 3w 1 1
* 5 Mg v 55 Mg - ogm Agdyy 5 Aydyg
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1 1 = 2 ©
Upp T Byt By, = 8 {535 [aley, + 18A3u

b 38A) + nen - 2 B2, L 25 82,

3™ Moy T2 a3t T T A
5 32 w 5 ® 1

* 5 g My - 37 A% - 5 7 A% tF Aoy
1 _

+ 5o Ahe28 - & A2e29] + s5% [A1(5OA1+“’ + 5[—13A2)

—2 —_2 -

25 9 4] 3 ) m

B TR T - B

3 1 1
-5 & M v 7 M7 tozm A8 Y5 A1'329]
+57§[25.-”3—?A -E-U)—-A --5-5 e +-1'-Ae
T "a L 2 a 4 2aA226 28, 4728

P ]} L) 3

It is possible to obtain A, and ), from the first two of Eg's. (4.43)

and to obtain u,, and u,, from the second two of Eq's. (4.43). By
inspection it can be seen that A2 and Ao include a factor of a.)+ and
U5 and u.22 include a factor of a.s. Consequently when the amplitude

a is small, the correction to the frequency, Ag » and the amplitude
ratio, Ay s given by the second approximation are small compared with
the corrections given by the first approximation. Similarly the amplitudes

of the additional periodic terms, U, and u,,, are small when g is
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small. It is evident from the recursion process that has been used
that the nth approximation will yield wvalues of An and xn that

include the factor a2n; also Un and u n have the factor a2n+l-

2
The solution obtained in this fashion is an analytic function of the
parsmeter o and the equation can be satisfied to any desired accuracy
for small amplitudes of motion, even when ¢ . is relatively large,
because the coefficient of increasing powers of ¢ can be made to con-

verge at any desired rate by selection of a sufficiently small amplitude,

a . When ¢ is set equal to 1 we obtain

=] -]
, = acosd + E:uln = acos § + Ej By, .1 OB (em + 1)3

5. =
n= m=1 (. 4k)
o, = ax(l) sin & + E:uzn = ax(l) cos & + §:02m+l sin (2m + 1)%
n= m=1
in which
5 = (“ﬁ LI VE T Y VP Jr + 5
(i=1,2) (4.45)
AL Aot oAy FoAp T

In the above, § is an arbitrary phase angle and the index
i, denoting the natural frequency near which the principal oscillation
takes place, has been reintroduced. We note that the frequencies present

include only the odd multiples of & . Also it can be seen that no
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sdditional frequencies will be introduced if higher order terms (i.e. the
Tth, 9th, etc. power) in the displacements and their derivatives had been

included in the equations of motion, Eq's. (4.35).

4.7.3 Complete Nonlinear Periodic System

In view of the procedure shown in the preceding section it seems
reasonable to consider the complete equations of motion, Eq's. (4.13),
to be functions of the two parameters, o and ¢ . Including only terms
through the third power in the displacements and their derivatives, the

equations of motion become

" f = 1 2 2 - i t
8 * Bi% * B8 < 0{92 [92 vt e(e - 5er) - 9192]

L+ 3r + geer - ge2)+ ei(%ﬂ,r

2, 1
+ o [5(Fer
2 L 2 , 2 2
B EY) s eyl n o
+91(-h-2zr+e§<zr-l3+9r>

a0 wlne - 3]}

" eE{CZ-r[eé(- 5 + ;25-92 + 56?_) v 07T - 3ar

2 /5 41 27> 2 /5 14
+92<1:““2' T *91<'1§“"3‘>)]
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+ s27 [592(1 - %’-92)]} + €3 {} +
o + 80 * B = of ey + of [e00r - e

+ (ﬂz—r- 2)e§] + ea[eg(%zr - % + 2r

- }3232 + 31‘32) + Qi(%'-f,r - b + 3r - -:L23—€2
9 2 2 2 1 2
+ §er)]} + e{s'r[- 261(1 - -§91 - 592)1
e2
+ c-r[’-iei(l - —22 - 9‘;2_) + 92(13 - 9 - 2r
+e§%<zr-26+18r>+6§<1’,r-13
+ 9r>)]} v & {ser[-500 - 5 - 7)) ]
, 12 2 1
+ c27 [sel(l - 56 - 8)) + o8(3 b - 27
21 /5 21 /5
- 527 + 92-3- fer - i + o1r 8554

_ou o+ 27r> )]} SR R (4.46)

We will again assume a solution including principle oscillations with

frequencies near E)'l and DY) but including frequency and amplitude
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ratio terms that are functions of both € and o . In addition, the terms

uiJ and Yij'are added and will include all terms of other frequencies.
_ ' 2
6p = & cligr + &) + beljyr + &) + wao + uyo
+ w..e + U 32 + u,.eoc + .
Ol (021 11 : o
_ 2 2
6 = a0y * Mo o Ad * Agp T AgpE * Aqpeo
2
+oees) s(x];l-r + 61) + b()‘z Y09t Y
+Y01€ +Yp€ tYi11 €0+ ...) sT + ;
01 02 11 ) sy, 3,) + v,y 0
2 2 L
oVl F Vgie * Vet Viie0 ... (.47)
. = w, -+ + 2 2
Y o= oW Aloc AEOG + AOle + Aoee + Alleg + ...
- & + r,o +7T &
Yo = W Flago F A0 F ol folgpe T olgged e

The above periodic form of solution has been found to satisfy the equations
of motion to any desired accuracy under the conditions of (a) non-
resonance with arbitrary phase angles, 51 and 62, or (b) resonance
with specific values of one of the phase angles. This latter case

corresponds to constant amplitude resonant motion that is admitted on
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the boundaries of the resonance instability regions as discussed in
Section IX. Analysis of the resonant oscillations would require the
assumption of a time-dependent amplitude. However, in that case the
frequencies of oscillation of the periodic terms would be the same as
obtained in the constant amplitude expansion.

Substitution of the assumed solution, Eq's. (4.47), in the
complete equations of motion can be shown to result in oscillatory

motion including terms with the following frequencies

+ 4+ my, + ny, , (4ymyn = 0,41,+2,...; min = odd integer) (4.48)
The implications of possible resonance with this multiple~infinite
number of frequencies was discussed in Section L.6.

The amplitudes of the terms on the right in the equations of

motion that deal with the third and higher powers of © 62 » and

l J
their derivatives can be made arbitrarily small by restricting our
attention to sufficiently small amplitudes of oscillation. Thus many
of the resonant frequencies predicted in expression (4.48) may be of
small consequence, Eliminating all terms in the oscillation with

coefficients raised to the fifth or higher power of the amplitude, a,

it can be shown that the frequencies of oscillation are

n i “l"l’ n i ‘112’ n i 31‘1"1, n i 31"2’ n .'.". 2‘»1 .".: ¢2’ n i 2¢2 :.I'. ‘i“l’ (n=0,1,2,...)

(4.49)
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When € dis small, the corresponding resonance regions must occur where

the natural frequencies take on the following approximate wvalues

s o~ D 5 o~ 5 o = o n =

W FY s Wp=F s Iy r®;=n o, 3,40 =1,

- - ~nn

a)li(b2='§ ] (n=l,2,oo-) (’4‘-50)

If we further restrict our attention to the case in which all nonlinear
terms are eliminated we see that the frequencies present in the periodic

solution include only
qu’ ¢2’ ni ‘yl’ ni‘pg, (n=l’2J°°') ()'I"Sl)

It was previously shown that, when € 1is small, this results in
resonance regions where the approximate value of one of the natural

frequencies is

m

ois
-
=)

"
mn

n , (n=1,2y00.) (k.52)

I+
=]

It would be desirable to limit our attention to the linearized
equations of motion due to the simpler mathematical forms that are
involved. To determine the conditions under which this can be done, the
nonlinear equations must be considered and the effect of nonlinearity
muist be understood both as to its effect on the linear resonance
regions (resonances that appear in the linearized case) and the

characteristics of the resonance regions that appear only in the nonlinear
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case. For small oscillations about the equilibrium position, the
nonlinear terms with the greatest magnitude will be of the third power

of the displacements Gl and 92 and their derivatives., These are

the nonlinear terms that were retained in Eq's. (4.46). The expansion

of the complete assumed solution, Eq's. (L.47), in the equations of motion,
Eq's. (4.L46), is extremely lengthy and will not be shown here. Instead,
the analysis is given here for a single resonance oscillation®, so

that the assumed solution is

2
€+ u,,€0 + ...
11

@
1

2
6
a c(WiT+ i) + w0t uy 0T+ ug,€ U,

2

(a2
It

2 2 . o
a(ki+kloc+heoc +hop€thg € +kll)s(wiT+6i)+vio +,00

(e} .
+ V:]€+V:2€E;Vj]€ + oo (k.53)

vy = ‘T’imlocmzoc’g*%f“’%zee*%eo $oeer

where i may take on the values 1 or 2, corresponding to oscillation

with the frequency of the principal oscillation near &l or ®,

respectively. Terms in the solution that involve coefficients with a

* This selection greatly reduces the algebraic computations, but at
the expense of making the analysis incapable of describing the effect
of the nonlinear terms on resonances involving the sum or difference
of natural frequencies. However, the influence of the nonlinear terms
on these resonances is expected to be similar to the effects shown in
the present analysis.




factor of the amplitude of oscillation, a, to the fifth or higher power
will be neglected, consistent with using as the equations of motion
Eq's. (4.46) which are truncated in a similar fashion. By comparison
with the preceding analysis of the unperturbed, nonlinear equations

we see that terms in o +to powers higher than the first can be

neglected and

o2 11(‘34'“’ ) - 1131‘51
(B,55) (B A, =25) + By, (Bo+2A.E, )

il

S0

N 11(53+2R w, ) + eq,(ByA - -, )
0 (8D (ByA-a5,) + Bid, (BN G,)
(ko5k)
upg = Ajc 3V

vhere A, and A3 are given by Eq's. (k.k2).
Substitution of Eq's. (4.53) into the equations of motion,

Eqts. (4.46), and use of Eq's. (L4.5k4) gives
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e {alag (82,-35,) + Ay 8.6, Je(¥,7+6,) + ugt + By +%%J

+

+

+

{al

+

+

+

e {a[Aoz(Bl'Ai—aBi) + A 0P w ]c(\,l T+, ) +ull + BV, + Bl 02}

? {aLAll(Blki-aii) + A By0, Je(V ™0, ) + ujy 4+ BV + Bzuli}

{a[pl +Pq 2 ]c('r+1,’ii'r+6i) + a[Pl3+Pllpaejc(T'¢iT'61)

3

a P15

c(T+3¢iT+36i) + a3pl6c(7-3¢iT-36i)} + &2 {eead + €0 {L0ad + oue
(4.55)

;
1 (=Bo=ad, 2y ) + Ao, (By o) $)Is(4,T+8,) + vay + Baudy * ByVouS

2{ LA02( 53-30 Ay + AO2(5)+-(D )]S(U T+, ) + VgL + Bl + By, 2}

€O 1a[AJ_'L( 5 -zm A ) + Kll(ah-w )]s(W T+8, ) + vy (33 11 F BV J}

€ {a[qll+q12a2]s('r+x‘ii'r+6i) + a[ql3+q1ha2]S(T'q’iT"éi)

s(fr+3¢ T+36 ) + a ql6s('r-3¢ T=-36, )} + € {...}



in which

pll=2-2)\imi-1&r-)\i

Py -':-é' [2)\ 12, co +12 (i’lr-13+9r) + dr -8 + l3]

Pig=2- Ao, = dr o+ A,
Py, = [2x ;E2AB, + AS (/or-13+9r) + dr = § - )\3J
P15 = %{; [-6>\§<Bi+12>\ic3i-37\§(fr-13+9r) + dr -8 - x;’j
Pyg = -:éL-E ['6)‘3‘31'*12)‘1‘31'3}‘5('@r"13+91”) + dr - 8 + )\2]
4qq = % A, (13-9r-24r) = 1 - a5,

= %—[h&-h zBi+hJ>i+A§( Ip-26+18r)+), (fr-13+9r)]
a5 = - % A (13-9r-24r) = 1+ 25,

0y, = § LAT-00T5, 15, A3 (ar-26+28r) ), (fr-13+9r)]
qls L)_'I_ D-I-"3}\ -6)\- (_l) +lal) -)\-2(‘%‘"264'181‘) + 3}\1( ,@r-13+9r)]

96 = 35 [-3A3H6AJ5, -188 13 r-26418r) - 31, (4e-13407)]

(4.56)
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The asymptotic expansion can now proceed by equating the coefficients
of € in Eg's. (4.55) to zero. When this is done it is seen that
resonance conditions, in which the frequency '¢i appears on the right,

occur when
wi =1 + wi ) q’i =1 +* 3“’1 (}4"57)
which correspond to

Case A: U}

1/2  (or ‘Bi T 1/2)
(k.58)
Case B: y

/b (or &i = 1/k)

Analysis of Case A shows that

* Case A - (ﬁuqif)(ﬁlki'aii) + 515i(ﬁ3+25ili)
(k.59)

where the plus sign corresponds to one boundary of the resonance region
and the minus sign to the other. A resonance instability will occur,
to first approximation accuracy, whenever the parameters of the problem

are such that

€ (4.60)
Case A

0.5 - |A01I| e <& 4 A< 0.5+ ,AO_.L'

Case A
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One can see that the nonlinear terms in the differential equations have
introduced frequency correction terms that are proportional to the
amplitude of oscillation to the second power, a2, as given by AlO

and the part of Abl that results from the coefficients Py)ys Pygo
Q)0 and %5 ° Figure 4.3 illustrates the effects of including the
nonlinear terms for the case of r = 1.5 and € = 0.1 and 0.01 .
Note that this is a resonance case that would occur even if nonlinear
effects were omitted (see Eq's. (4.52)). The linear analysis shows
that unbounded oscillation would occur for values of spin momentum,

4 , identical with those predicted by the nonlinear analysis for

a ¥ 0 . The nonlinear analysis, however, shows that the motion is not
unbounded. With a constant spin momentum the amplitude of oscillation
increases giving rise to a "stiffening" of the system; as a result

an upper limit of the amplitude is reached. The maximum amplitude is
a function of the width of the instability region. Inspection of
Figure 4.3 shows that the amplitude would grow to a maximum value in

excess of 0.5 radians for £ = 0.837 when € = 0.1l . On the other

hand, the maximum amplitude for the narrower resonance region correspond-

ing to € = 0.0l 1is approximately 0.15 radians and occurs when
4= 0.878 .
Case B of Eq's. (4.58) occurs when the natural frequency of the

system falls within the range given by
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0.25 =~ |A01| € B, + By < 0.25 + |A01| €
|Case B Case B
(4.61)
in which
2 P16(51;"5§ ) = 43Py
Aol = a (l|~062)

) - - -
Case B (B3 )(Byhy-20;) + Byo; (Byran,h,)

It can be seen that the frequency correction terms are proportional to
a2 5 so that the width of the instability region is essentially zero

for very small amplitudes. This type of resonance region is illustrated
in Figure 4.4. Note that this is a resonance region that does not
appear in the linearized case. Inspection of Figure 4.l shows that the
instability region has zerc width at zero amplitude. Further, if

a disturbance occurs so that the instability region is entered, a
further limited increase in amplitude will occur (at constant %) until
the boundary of the resonance region is encountered.

When no resonance occurs in the e-order terms, AiO is found
to be zero. Resonance regions that occur at other frequencies given
in Eq's. (4.49) can be found by considering higher order terms in the
asymptotic expansion, Eg's. (4.53). In general these regions will be
narrower than the two cases just described, since their width is

measured in terms of Ah multiplied by e” where n is equal to or

0
larger than 2 and € 1is a small parameter. Consequently, in these

cases, the amplitude of resonance oscillation will be further restricted
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because of the phenomenon noted above, that is the tendency of the system
to shift the frequency of resonant oscillation so as to limit the
amplitude reached by the system for a given set of parameters.

Ve conclude that our principal interest is in the resonances
given by the linearized system and, further, the most dangerous resonances
will be the broadest resonance regions given by the lowest order
approximation in € . Hence, concentrating on the linearized system,

we may write the linearized equations of motion

O + B6) + BH =€ {c¢[-h@é + el(h-ezr)] + sT(Qee)}

+ eg{cET[-56é +0,(7 = 5/2 #)] + s27(56,)} + o(e3)
(4.63)

6F + P3f] + PO, e{cTlhot + 0,(13-9r-24r) - s'r(eel)]

+ <-:‘2{<:2'r[5<93'L + 6, 1/2 (M1~-27r-54r)] - sa'r(sel)} + o(e3)

and the assumed solution will be as given by Eq's. (4.47) but with

O set equal to zero.

| . 2

= 3 &
6, =2 c(wlT + 61) + b c(va + 2) + Uy € U NET + oL
6, =a(l, +A €+ A € 4 ) s(V,7 + 8.) + (A, + Y.j€ + Y 4 )
2~ 1 ol o2 o 1 1 2 0ol 02 e

e s(VT+ 8 )+ v, .e+v ...

2 2 0ol 02 **
(L.64)
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no
no

Substituting the assumed solution into the equations of motion and

equating the coefficients of the first power of € one obtains

alng (=an) + BN ) + A pioy ] e(¥y T+ 6) + bl r01("352‘“"31/\2)

\
YorBr®pd (¥ + 85) + uly + B;vS; + Bouyy

+

T i T+ 0
ale. . e(T + Vl + l) +

-! - 3
1 p ol = ¥;7 = 8))]

T

i T gy T 8 - - ]
+ b[f2l (T + v,T + 2) + 5 (T = ¥,T = 8)]

22
(4.65)

alfg, (-By=2h@)) + Ao (B - 5§)J s(iy7 + &) + bl I (-pg=2hg5,)

-2 . ,
Yor(By = @) (VT + &) + vi 4+ pauly + By,

+

a[gll s(T + ¢lT + 51) + 815 s(T = ?lT - 51)]

+

. a |
bLgEl s(T + ¢2T + 02) + 850 s(T = ¥T - 52)]

in which
Lo - 21)d
fij=2[14wi>\i+1r 2£m+(1)2xi3
(k.66)
gyy = 3 L(-1)748; + (-1)%, (20249r-13) - 2]




Resonance may be seen to occur in Eq's. (h.65) when one of the

Specifically this

frequencies on the right is equal to ¢l or ¢2 .

occurs when

= i Yy - d - ) | - 1
¢11.iwl, V=14V ¢_1¢v2, Vo =1 ¥, (k.67)
Eliminating cases without physical meaning and repeated cases, the

principal resonances are seen to occur for the following principal

frequencies of ogcillation

Case 1: ¥, =y + A€ + oow = 1/2
Case 2: ¥, =w, + Igle + e = 1/2
(4.68)
Case 3: Wl + ¢2 =0 + w,, + Able + Lble + eee = 1
. J - ¥ =- -- - TN' sse =
Case k: ¥ ¥, L " O + A€ f01€ * 1

The first case given by Eq's. (4.68) can be investigated by

setting ¢l = 1/2 in Eq's. (4.65). Our interest is principally in

determining Abl which is done by equating the terms of equal frequency

in Eq's. (4.65). This yields a solution when 0. = nn/2 , (n=0,1,2,.4.),

) =

corresponding to the condition of constant amplitude resonant oscillation

on the boundaries of the resonance region. ¥For this case, AOl has been

evaluated as given below, where the positive sign corresponds to

51 = 0,7,2,.4. and the negative sign corresponds to 61 = 2; 3 g?...
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-2 -
£10(B), = ©7) = 8Py

8oy =+ (h.69).

-2 - - -
Case 1 (By = @D)(=20) + By)) + Bio, (By + 2h i)
Thus an unstable resonance condition will be encountered (within first

approximation accuracy) when the parameters of the problem are such

that the natural frequency falls within the range

% - IAOlI € <"-°1 <% + |A01| € (k.70)

Similarly for Case 2 of Eq's. (L4.68) the unstable region is given

by
32"- I'Ol‘ € <<I>2<% + II"Ol‘ € (k.71)
in which
} £,0(By = Bp) = EppPiy
o =i(a -52??-25+Bk)+5&(5 + 2hg5,)
Case 2 L~ ©2 2" F1%2 1P\ P 2

(k.72)

Case 3 allows two distinet resonance oscillations to take place,
one with frequency near &l and the other near 52 « The frequencies
of oscillations on the boundary depend on Abl and ] o1 which are

found from Eg's. (4.69) to be




-2 -
TRy = e7) - gpoBioy

2 =xg
A - -2 - - -
Case 3 gy - B2y + BN + By, (By + 2M 00, )
b
=z a A%l
Case 3
(%.73)
-2 -
g £10(8), = ©3) ~ &) B0,
To1 =Xy =2y, = - -
Case 3 (B, = wg)(-av, + Bi2) + B, (By + 2h4i))
a *
=x3 Tor

Case 3

In each of the above equations the positive sign corresponds to
oscillation on one boundary with 61 + 62 =0, 2, ... Whereas the nega-
tive sign corresponds to oscillation on the other boundary with 8y +
62 = 7ty 3N, ea.

An unstable resonance condition will be encountered (within first
approximation accuracy) when the parameters of the problem are such that
the sum of the natural frequencies falls within the range

1l - AOl + Ol|_’e <« (.)l + ub <1l + Aol + I—IOl [] ()4'.7)-#)

where the values of A _ and Ibl used on each side of the inequality must

o)1
be evaluated on the same boundary of the instability region.
Case 4 is similar to Case 3 in that two separate oscillations

again take place, The unstable region is found +to be given by
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L- , on = loale <o -m <oy - Ty e (4.75)

where-Abl and Iﬂol on each side of the inequality must again be

evaluated on the same instability boundary; their values are given

by
_2 -
8oy v p TRy - ey) - e Py
T a -2 - _ - -
Case 4 (B, ~ of)(= 2wy + r)ry) + Byay (B3 + 2hywy)
b
=iz %n
Case 4
» (4.76)
Ty Lz By - ) - e,ed,
Case L b () - &g)(- 2w, + Ryhy) + 91&2(53 + 2,0,
=fla;

Case k4
where the positive signs again correspond to the boundary for which

51 - 52 =0, 2%, ... and the negative signs to 61 - 62 =1, 3, ....

Cases 1 and 2 above furnish means of calculating the size of the
resonance instability region for any orbit eccentricity. Cases 3 and L,
on the other hand, do not establish a unique resonance region, since

the parameters Ab and Iﬂ are functions of the relative amplitudes of

the two principle oscillations. Specifically, in Cases 3 and L, Abl
proportional to b/a and Ibl is proportional to a/b. It can be shown

* *
for Case 3 that, when A . and Iﬂ01 have the same sign on a given insta-

021
bility boundary, the minimum width of the ims tability region is given

by

*
/ by
Case 3

]1/2

Case 3

*
o/a =[], (4.77)




* *
The instability region may have zero width when IﬁOIand A01

* *
are of opposite sign. Similarly, in Case h, when Abl and Iﬁ01 have
opposite signs on a given instability boundary the minimum width of

the instebility region occurs when

bfa = [T / & Y2 (ure)

Case 3 Case 3
In this case the region may be of zero width when A;l and I“;l have
the same sign,

Of course, the regions described above in the first approxima-
tion could be established in greater detail, if desired, by further
expansion of the equations of motion aml sequential solution for Abe’
I-102’ Ab3,
mation has been made for Case 2 (¢2 = %). To this end we must find v,

Iﬁo3, ete, To illustrate this procedure, the second approxi-

and v

4 o1

o1 from the first approximation. The expression for Yo1 is

£ (B +2x(}3)+g(ex-2fu)
Yoo = % 22 3“2 2% N ) ) (%.79)
(8), - wx)(Byhy = 2wy) + 8y0,(B5 + 200))

where the positive sign corresponds to 62 =0, , ... and the negative

70

sign corresponds to 5 T2 eve o Equating the coefficients of 92

2’
in the asymptotic expansion of Eg's. (4.63), applying harmonic balance,

and solving for Iﬁoe we obtain

e} -
r 58 w) - 80 (4.80)
02 - = = -
(ey - @)(B Ay = 20;) + Biay(By + 2250,)
in which
>
fa= Iy - By DorYor * 8= 1 - 20,) + 85, (2 = or) & [ygymptan, [y -y, ]
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(4.81)

T L2 13 F
Ty =2k “aplop Fally + (F -5 - ar)(By £yy) - (L4 wp) Ay

1Yo1%e 2401

oho

In the above definitions of f3 and fh the positive sign corresponds
to 62 =0, n, 28, ... and the negative sign corresponds to 52 = gﬁ
%3 ess o The coefficients A21 and B21 are identical with those derived
below for the ¢ order terms,

When the parameters of the problem are such that no resonance
regions in the ¢ order terms, as given in the first approximation by

Eg's. (4.70), (%.71), (4.74), and (%.75), are encountered, then the

equations of motion, Eq's. (4.65) yield the solution

By = A =0

I01 = %01 T YoL

gy = albppelr + uyr + &) + Aol -

3
]

8,)] +

oAy c(r + §o1 + 8,) + Ayelr = g, = 8,)]
(4.82)

E
t

o1 = aLBllS('r + \,’Il'T + 61) + 3125(1‘ 61)] +

b[Byys(r + 4,m + 85) + Byos(r = yor - 6,)]

in which
£..08, - [1 - (-1)94.7%) - g..8,[1 - (~1)%_]
__igtth Vi ij°1 i

B gy - - (0% T ey, - (- (D707 ¢ epag - (1))

2

3 j 2 (+.83)
) £5485(1 - (-1)7;1 + g, {8, - [1 - (-1)%4;17)

B.. T - .
Woofe, - [ - (-l)‘]\lfile}{elF -M[1- (-1)J¢i]2} + By8,[1 - (-1)Jwi]2
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Equating the 32 terms in the asymptotic expansion of the equations of

motion, using Eq's. (4.82), gives

albop(pyhy = 20) + hoplyoy ] eligr + 6;) + BLIp(pr, = 2ap) +
YopPypl elipr + 85) + ugy + By Vi, * ByUg, = alhyelyyr +
§l) + hac(ET *ogyT 61) + h3c(2T = YT - 51)] + b[hhc(¢2+ +

8p) + Bge(2r + gy + 6y) + hge(2r - yor - 6,)]
(k.84)

alBop(-83 = 24y31) + Agp(By = 5707 slugr + 6)) + L [(-py -
2hgiip) + vgalPy = 85)1 s(upr + 85) * viy A3l * PyVop
= a[kls(¢17 + 51) + kes(2-r + gyt 51)] + k3s(2-.- - gy -
8101 + bl s(uyr + 8,) + kgs(2r + yor + 8y) + Kgs(2r -
41 = 65)]

where the values of the constants h and k are

1= (-1 = 2w)Byy + (-1 + 20))By, + (2 - 2x) (A + App)

=
]

(=3
|

p =5 (=5h@ + T =2 or = 50)) + (=3 - 25))B) + (2~gr)A,

=3
I

= % (-EAl&l + 7 - % gr + sxl) + (-3 + 2&1)1312 + (a-p,r)A12

h)+ = (-l - 2(])2)321 + (-l + 2(D2)B22 + (2 - ‘r)(Ael + A22)
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by =3 (<Sigily + T = 3 47 = 5hy) + (-3 20,)B, + (2 = 4r)Ay
he =% (-5x2§,2 + 7T = gzr + 5r,) + (=3 + 23&)322 + (2 - £r)Ay,
k= (-1 - 25))A; + (1= 28)A, +5 (13 - 9r - 2¢r)(B, - B,)
ky = 2 [~50y + 5 A (41 = 27 = 5pr) = 5] + (-3 - 25)A, +
% (13 - 9r - 2¢7)B
2 11 (4.85)
kg =5 (5B - 5 h (8L - 27r = 5ax) = 51+ (-3 + 25)A,, +
5 (13 - or - 2w)3

K, = (-1 - 20,)A5; + (1 = 20 )A,, + %— (13 - 9r - 207)(B,; - Byy)

kg = 5 [-50, + 5 Ap(k1 = 27r = 5pr) = 57 + (=3 - 25,)Ay +
% (13 - 9r - 247)B,,

ke =% (58, - -% A (UL = 2T - 5pr) = 5] + (-3 + 2;02)*‘\22 +
-é— (13 - 9r - 247)B,,

One can observe, based on inspection of Eq's. (4.84), that resonance

regions exist for

¢1=2i¢l’ ‘bl:ziqre’
(14.86)
wg =2 i ¢l b4 ¢2 =2 i wg

Eliminating cases without physical meaning and repeated cases, shows

that the following four additional resonance regions appear
2

Case 5: ¢l=a)l+Aoee + ... =1
- 2
Case 6: \1;2=w2+]:_c‘)2e + 400 =1




B

(4.87)

1
n

Case T: *1 + ¢2 = ai + Eé + A02c2 + Ibeez t see =
Case 8: . =y, =0, - w, +4 €2 + e2 + =2
S L Tl - T R i o) 02 e

Solving for the coefficient Abe corresponding to Case 5, one obtains

) -
Dos (_hl + h3)(54 - o) -(k k3)leL

Case 5 (Prhy = 28)(8y - 8) + ey (hg + 2yny)

(4.88)

= m

L im

2
in which the positive éigns yield the boundary of the instability re-
gion for which 51 = 0, %, ... and the negative sign gives the boundary
corresponding to 51 = %, %;3 ees o JInstability can be seen to occur

within the accuracy of the second approximation, when the parameters of

the problem are such that
- 2
1= (o o+ my]) <l <l- (my - |m)) e (4.89)

Similarly for Case 6

o

Loe (hy + bo)(py, - E?.»g) - (], * Xg) Ry,

Case 6 (Apny = 203)(B, - @) + 8yd, (83 + 25hy)

=m3im)+ (4.90)
and instability occurs when
1-(m +|m)e2<E) <l - (m, - jm|) & (k. 01)
3 N 1 37 [Pl e :

Case T allows two distinet resonance oscillations to teke place,
one with frequency near 61 and the other near ab' The frequencies of

oscillation on the boundary depend on.A02 and IBE which can be found
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from Eq's. (4.84) to be

Boz by 2 2 1) (B - &) - Oy % 2 %) oy
Case T (Byry - 2y) (8, = &) + ey (B, + 20
b
=ms ko
(4.92)
Toe - (m, 22 n)(s), - 5)2) - (k, = 5 k) 80,

Case 7 (Byh, - 25,)(8, - @) + A @, (85 + 26,1,)

I
I+
o'l
05

In each of the above equations the positive signs correspond to oscile
lation on one boundary for which 51 + 52 = 0, 2nt, ... while the nega-
tive signs correspond to oscillstion on the other boundary of the
instability region for which 61 + 52 = 7, 3%, ... . An unstable re-
sonance will be encountered, within second approximation accuracy,

when the parameters of the problem are such that the sum of the natural

frequencies falls between the values 2 - A - f‘, evaluated
02 02
Case T Case T
on one boundary of the instability region and 2 - A -
02 02
Case T Case T

evaluated on the other boundary.

It can again be noted that the width of the instability region is
a function of the ratio of amplitudes, b/a. When me and mg are of the
same sign, it can be shown that the minimum width of the irstability re-
gion occurs when b/a = (m8/m6)l/2 so that the motion will always be un=

stable when




2 - [ms oo+ 2 vﬁgﬁg ] 32 < &l + 52 <2 - [m5 +m, -2 vﬁgﬁg ] e
(4.93)
Although the above relation gives the minimum width of the instability
region when me and mg have the same sign, no similar relation is pos-
sible when mg and mg are of opposite sign, since the instability region
may be of zero width in that case,
Similarly in Case 8, an unstable resonance will occur when &1 -

Eé falls between the value 2 - A evaluated on

- ]._‘r‘l
02 Case 8 0= Case 8

one boundary of the resonance region and 2 - A - I
02 02
Case 8 Case 8

on the other boundary, where Abz and Iﬂoz are obtained from the following
expressions

b -2 b -

-— - - + =

AO2 ~ (hl + a5 hs)(s)_l_ (ul) (kl il ks) Blwl

= 2 = - -
Case 8 (Hlxl - Ewl)(Bh - wl) + lel(83 + 2wlll)

9 — a8 mlO
(4.ok)
Log _ (n, £ 210))(py - "’32) - (I, + £ k) 8oy

-2 _ _
Case 8 (Rlxa 2&2)(Bh - w2) + Blm2(83 + 2uéX2)

+ &
%o =% M2
In the above, the positive signs correspond to the boundary on which
61 - 62 = 0, 2n,... and the negative signs correspond to the boundary

on which 8y = 8, = T, 3%, ... » The instability region may be of zero

2

width when mlo and m12 are of the same sign. The minimum width of the
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instability region, when m 4 and m12 are of opposite sign, is given

by
2= mg -m,y +2,/m omle]e <@y =@y <2 - [mg '“‘11'2‘/'“’1_-_-F1;]e2

(k.95)

4,8 Results and Comparison with Other Research

The stability of attitude motion of a rigid, symmetric, spinning
satellite in an elliptic orbit has been investigated, The problem has
been formulated by regarding the ellipse eccentricity, e, as a para~-
meter., The orbital coordinates comprising the radial distance R and
the angular position ® are treated as known functions of time. A set
of nonlinear equations of motion is derived containing periodic coeffi-
cients entering into the equations by wvirtue of Rand ® . A particular
equilibrium position in which the spin axis is normal to the orbit plane
has been identified and the stability of motion about this equilibrium
position studied. The equations of motion have been studied in both the
linear and nonlinear form using the methods of Section II, Instability
regions have been located in the g vs. r plane where g is proportional
to the spin angular momentum pCD and r is the ratio of the moments of
inertia about the spin axis and a transverse axis. The location and
width of the instability regions have been determined for vari ous walues
of ¢ in closed form., The important nonlinear phenomena are presented
in Section 4.7. The appearance of new instability regions, not found in

the linearized system, and the occurrence of nonlinear "stiffening" of
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the system tending to 1limit the amplitude of resonance oscillation are
noted. Typigal resonance regions corresponding to the nonlinear equa-
tions are shown in Figures 4.3 and 4.4 where these effects can be seen,
The latter effect has been demonstrated both analytically and experi-
mentally by Bolotin (see Reference 22, page 88). Thus consideration of
the nonlinear effect shows mathematicaslly bounded motion., However, the
amplitude of motion can be rather substantial and the stability of mo-
tion must be defined in terms of the system performance requirements -—
bounded motion may be classified as unstable if the amplitude of oscil-
lation is too large.

The orbit eccentricity e has been treated throughout as a small
parameter, A value of ¢ that may be considered as small from a mathe-
matical standpoint is not necessarily small from a physical standpoint
as it can be shown to cover the vast majority of earth orbiting dynamics
problems., As an example an ellipse of apogee height 1000 miles and
perigee height 100 miles has an orbit eccentricity, ¢, slightly less
than 0.1, This ratio of apogee to perigee heights, however, is regarded
as high in most space applications.

No previous stability analysis of the complete nonlinear system
of equations is known to have been performed, The analysis of the
linearized system can be directly compared to the work of Kane and Barba
[13] who also studied the stability of motion of a rigid, symmetric,
spinning satellite in an elliptic orbit. Their analysis, based upon a

method by Cesari [20], utilizes Floquet's theory together with numerical
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integration of the linearized equations of motion to check the stability
of motion at discrete points in the parameter space. The investigation
of Reference [13] included checks of the stability for a mmber of com-
binations of parameters with an orbit ecceﬁtricity of 0,1, and can be
canpared with the reailts of the present more general anslysis. Figure
4,5 shows the stability data of Reference [13], converted to the dimen-
sionless groupings of the present research. Comparison with the sta-
bility boundaries dictated by the requirement for a positive definite
Hamiltonian, Figure 4.1, shows that the analysis of Reference [13] pre=-
dicts infinitesimally stable solutions for some cases of negative spin
momentum (i.e. spin in the direction opposite to the orbit angular velo-
city vector). This region of infinitesimal stability is not predicted
by the Liapounov type of stability analysis, when the Hamiltonian is
used as the testing function, as has been reported previously [9],
[10]. This stability region is known to be of little engineering sig-
nificance since damping has the effect of causing divergent oscilla-
tions in this region [9].

Figure 4.6 shows the stability data of Reference [13] in the re=~
gion of parameter space of principal interest in this investigation —
specifically in the region where nonresonance oscillations are predicted
to be stable for zero orbit eccentricity. Reference [13] shows that
five of the points for which stability was predicted for zero eccentri-

city became unstable for an orbit eccentricity of 0.1. Three of these
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FIGURE 4.5

STABILITY DATA OF REFERENCE [13)
FOR ORBIT ECCENTRICITY OF 0.l
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Legend

QO Infinitesimally Stable, per Reference [13],for e = 0 and 0.1.

& Infinitesimally Stable for € = O and Unstable for ¢ = 0.1,
per Reference [13].
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FIGURE L.6

COMPARISON OF THE RESULTS OF THE PRESENT RESEARCH
WITH THE STABILITY DATA OF REFERENCE [13]
FOR AN ORBIT ECCENTRICITY OF 0.1.
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unstable points are predicted in the present research because they do
not satisfy the requirement that the Hamiltonian be positive definite
for an orbit eccentricity of 0.1l. To show complete agreement with Re-
ference [13] the other two unstable points must fall within the resonance
regions of the linearized system, Whereas the stable points must lie
outside of the resonance regions. Review of the approximate locations
of tle resonance regions for an extremely small orbit eccentricity, as
given by Figure 4.2, indicates that a number of the points for which
stability was predicted in Reference [13] for ¢ = 0.1 could be in re-
sonance regions, Notable the points at r = 1 could show instabilities,
However these might not be detected by the numerical integrati on tech-~
nique of Reference [13], since the rigid body in that case equivalent
to a sphere and would not be subjected to disturbing torques. While an
eccentricity of 0.1 cannot be considered vanishingly small, the com-
parison still appears wvalid because the general nature of Figure L.2

is not expected to change substantially; +the resonance regions shift
locations slightly and increase their width with increasing e. Some

of the most significant instability regions have been defined for an
orbit eccentricity of 0.1, as shown in Figure L4.7.

Concentrat ing on the two unstable points shown in Reference [13]
at 4 =1l.0and r = 2,0 and 1.4, we see that the first of these may be
subjected to any one of several resonance conditions, the most impor-
tant being a resonance oscillation for which ab T 1 (see Figure 4.2).
The existence of instability at the first of these two points was not
confirmed in the present analysis. As the present analysis considered
terms through the second power in ¢, it must be concluded that the

instability found by Kane and Barba arises from higher order terms,
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On the other hand, instability at ¢§ = 1.0 and r = 1.4 was confirmed
and it can be seen from Figure 4,7 that it belongs to the resonance

region (I’l + (;2 >~ 2,
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SELECTED INSTABILITY REGIONS
FOR ORBIT ECCENTRICITY ¢ = 0.1
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APPENDIX A

EXTENDED LIAPOUNOV STABILITY CRITERIA FOR

NONAUTONOMOUS SYSTEM
Theorem

Given a system described by the differential equations

xs = XS(Xl,xz,.oo’xal,t) » (S=l,2,...,2n) (Aul)

for which an equilibrium position, B, exists at X =Xy = eee = Xy = o,
the disturbed motion about this equilibrium position will be stable if a

contimious function V can be found such that

2o V(xl""’x2n’t) is positive definite in the neighborhood of E

and zero at E , and

t 2 2 2
be J W o < M(x(o) + x(o) + eae + x(o) ) for motion subsequent
£ dt 1 2 2n
0
to t =t, , in wvhich M is a finite positive constant and

0
xio) 3 xéo) seses xgg) are initial, small displacements at
time t = to .

Definition

Xoox = € will be defined to mean a surface of cubic shape, with

geometric center at the origin, and with sides of length 2¢ .
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Proof

Iet us assume that V is a continuous, positive definite function

in the space and time domain given by

x, Sh , b=t (a.2)

Contours of constant V in the XysX5se 00X,  Space at any given
instant are closed surfaces gbout the equilibrium position. Also, since
V is a continuous function, the contours corresponding to different
values of V do not intersect one another.

Let us choose an arbitrarily small positive number e

1 with

e, <h (A.3)

We will designate as Vi the smallest value of V that occurs at any

time t =2 to on the surface x = el .

The closed contour V = Vi will change shape and size in the
XysXpreee Xy space since it is in general a function of time. However,
it will remain a closed contour enclosing the origin since V is

positive definite in this region for all time ¢t =2 t, . We will denote

0

by =x = g the largest cubic surface centered about the origin that

max 2

will be entirely enclosed in all contours V = Vi s Tor t = to . It
can also be noted that Vi is the largest value that V can take on
this cubic surface. This is showm graphically for two dimensions in

Figure A-1.
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Note:

V=Vl

Crosshatched Region is the
Area Swept by the Curwve
for t > to

Contours of VvV = V'l
For Various Times

FIGURE A.1

TWO DIMENSIONAL EXAMPLE OF THE TIME DEPENDENCE

OF V = Vl FOR A NONAUTCNOMOUS SYSTEM




Let us consider the integral

t
v

od‘b

dt

in which the integration is performed along the motion trajectory

subsequent to time t = ¢ The motion is assumed to be initiated by

O L]
means of a small disturbance from the equilibrium position

0] 0 0 . .
x:(L ), xg ),...,x(al) occuring at time t = to +« We see that

t
d
Jt 31—‘{ at = V(t) - V(t,)
0
or £
V(t) = ¥(t,) + Jt %’ at (A1)

0

The motion will certainly be stable if V(t) at no time exceeds v, s
since all motion will then take place within the arbitrarily small

region X = €y o Therefore the stability requirement may be written

t
av
V(ty) + Jt Fasv (a.5)

0

We desire to show that if

t
_[ %}b-’ at < M(x_.&_o)2 + xéo)g oot x(ac;)z) (A.6)
0o
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then the inequality given in Eqe. (A.5) will be satisfied and the motion
will be stable. To do this we must investigate the form of V in the
neigh'borhood of BE. Since V is continuous and is positive definite
in the neighborhood of E and has zero value and zero first derivatives
at E , the function V must behave like a quadratic function (or higher
even power polynomial) of the coordinates X in a sufficiently small

neighborhood of the origin. For sufficiently small € this will

1

certainly be the case throughout the region Xg s €, o

a value, cys can be selected so that the value of V within the region

In that case
X, < € will be no greater than

< o .2 2
Voox cOV:L(xl + X5 teeot x2n) (A.7)

This can be shown by means of geometric arguments.

At the time ¢ = to

V(to) SV oy (xJ(_O),...,xr(lo)) < eV (xJ(_O)2 + xéo)g +...+x(o)2)
(A.8)

Consequently, adding Egs. (A<6) and (A.8) we obtain

t
V() + jt & g < (v egr) {07+ x(0% sl s 205
0

(a.9)
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Hence if

(M + °0VJ.> (xio)e to ot x;g)e ) s v, (A.10)

then the stability requirement, Eq. (A.5), will certainly be satisfied.

Furthermore the inequality (A.10) can be assured by suitable small choice

of the initial disturbance xio),..., xég).
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APPENDIX B

STABITITY ANATYSIS OF THE MATHIEU EQUATION

BY THE METHODS OF SECTION IT

The methods developed in Section II are developed for application
to multi~degree~of-freedom systems but can be applied to the Mathieu
equation which has a single degree of freedom and includes a periodic

coefficient., The Mathieu equation may be written
y + a(1l-2q cos anot)y =0 (B.1)

and could be derived from a mechanical system with kinetic energy,

potential energy, Lagrangian function, and Hamiltonian function of

KE = % §° (B.2)
1 2

PE = 3 a(l-2q cos Eh)ot)y (B.3)
1.2 1 (.. 2

L =37 5 a(1=2g cos aoot)y (B.4+)
1.2, 1 (. 2

H =33 +3 a(1-29 cos a»ot)y (B.5)



by means of Lagrange's equation of motion

-g-_—t- (%:1;) - %5 =0 (3'6)

We note that an equilibrium position exists at the point y =3y =0,

since this point satisfies the equation of motion.
Liapounov Type of Analysis

Application of the first part of the stability theorem states

that the motion can be stable if

%

5 = a{l-2q cos anot) >0 (B.7)
o E
Y

for all time. ILet us assume q to be a positive constant (which can
be assured by a shift in the time reference) and Eq. (B.7) is satisfied
if
a>o0,
(3.8)
2g <1
The second part of the stability theorem states that the following

inequality must be satisfied

t t
[ See=] $ e suel® 505 (8.9)
0 0o
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for the equilibrium to be stable. But Eg. (B.l) is linear and Floquet's

theorem tells us that the solution can be written in the form

z- Z u s )t [andcos(znnot + 61n)J (B.10)
n=0 j=1

Differentiation with respect to t gives us ¥ . Also, at time t = g

we know that y = y(o) and ¥ = &(O) « We can redefine the coefficients

in Eq. (B.10) so that

bt 2
- Bo4iv, )t
_ (0) z (b J 5
Y=y 2_ e bnjcos(Enwot + ln)
n=0 j=1
(B.11)
(0) ot 2 (P'.+ivj)'t
y=3 }j Z e Y : cnjcos(QnDOt + 62n)
n=0 j=l

and it will be assumed without proof that the Fourier coefficients
b, and c_ are bounded. Substitution of Eg.'s (B.11) and (B.5)
into Eq. (B.9) can be expressed in the form

2 t
(0)2 Z. 2. ;- I e(p‘jﬂ'k)tei(vak)td .cos(2w t + 6 )dt
nJ 0 3n

n=0 j=1 k=1 0
J= (B.12)

2 M )t v t
4(0) Z Z J (gt 1( ) epyc08(2nugt + 6 )at
n=0 j=1
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<M y(o)2 + M 3}(0)2

wvhere M is an arbitrary positive constant. This relation can be
satisfied as long as the value of each of the integrals is bounded.

We must investigate four cases

. . =
a uJ + M 0 s vj + Vi # 2nmo

>
be Hj + Hk 0 s v'j + Vi # 2nno

< -—

c. Mj + W 0 ) Vs + vy = 2
b+ “j > + =

d. 5 o] > Vit Yy 2w

The first two cases correspond to nonresonant motion, and the value of
the integral varies periodically with time. Case a. represents steble
motion for which the inequality, Eq. (B.12), is satisfied whereas case b.
is clearly impossible since, for large +t , the Hamiltonian would
oscillate with increasing amplitude. Cases c. and d. correspond to
resonant motion. Case c. represents bounded motion and case d. represents
divergent motion in which the Hamiltonian increases without bound
with time.

We can conclude that unstable motion does not occur in the

nonresonant case for which the Hamiltonian is positive definite. We

205



206

can use other techniques to define the resonance regions in detail,
but for small q it is possible to find the approximate locations of all
of the regions of resonance instability using the above information.

We note that in the limit as q ™ O +the solution must approach

-i/at (B.1k)

Comparison with Eq. (B.10) shows us that as q — O all the Fourier
coefficients must approach zero except those corresponding to n =0 ,

the P mst approach zero, and

vl "vg
vzﬂ-Jé

(B.15)

The resonance regions according to the last of Eq.'s (B.1l3) must occur

when the parametric resonance frequence is given by the spproximation

aa T 2oy (n=0,+1,+25004) (B.16)
or
~_ 22
a=n (DO s (mo,il,iQ,.-.) (3017)

This is valid only in the case of small g and is in agreement with

the existing solutions of the Mathieu equation.




At the boundary of each region of instgbility we will find that

periodic motion exists and that this motion can be expressed in the form

[-:)
y=2,% z (a.ncos m>0t + bnsih nnot) (B.18)
n=1

Substituting into Eq. (B.l) and equating coefficients of cos .t

we obtain
2
a.l(a)o - a+ qa) + agqa = 0
a. L(av )2-a] + a ga =0 (B.19)
2 0 L *
2 -
a .48 + an[(rmo) -a) + a g8 =0 o,(n = 3,k4,...)
and equating coefficients of sin m)o'b we get
b(wa-a-qa.)+bqa=0
1*0 3
2
’bz[(ano) - al+ byga = 0 (B.20)
2 =
b .98 + bn[(m)o) - a] + b 88 =0 ,(n = 3,4,...)

The determinant of the coefficients must be zero in order for a solution
to exist. Actually four separate determinantscan be written for the
coefficients of even and odd a, and 'bn « The determinants for

odd a, and 'bn have been found to describe the first region which has

been called the region of "principal" instability.
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(Dg"a'l'qa ga 0 0 e o & o
2 .
qa (3m0) -8, qa 0 e o o o
2
O qa (50.)0) -3 qa e o o o
=0 (B.21)
wg-a-qa qa 0 0o e o o
2
qa (30,) -2 qa 0 e v e
2
0 qa (wa) -a, qa .« o e e
=0 (B.22)

Dividing through by -n2a we obtain a form that is convergent [ 23l.

The infinite determinant in this case can be evaluated in its entirety
and this is one method of determining the regions of instebility of

the Mathieu equation. However, we are interested in developing techniques
for use in problems where this will not be possible. Evaluation of the
determinants, Eq. (B.2l) and Eg. (B.22), by taking successively larger
principle minors starting from the upper left will result, for small

q » in successively better estimates of the regions of instability.

The first estimate gives us




o2 -a=4aqa (2.23)

which gives

h)

a a)g (1 +q) (B.24)

or, for subsequent comparison, can be written in the form
va =wy(1l +1/2 q) (B.25)
The second approximation comes from
(w§ - at qa) [(3«»0)2 -al -g%=f=0 (B.26)

and can be written as an improved approximation for the first region

of instability.
V& Twy(l+1/2q +5/16 %) (B.27)

The second approximation also yields a first approximation of the

third region of instability. In a similar fashion the boundaries of the
odd regions of instability may be defined with increased accuracy as
higher order minors of the infinite determinants are evaluated, and an
additional region can be defined for each additional order is taken.

The even numbered regions of stebility
(nea-r i\/a = 0 L) lk.l)o ) 6.00 ,oon)

can be obtained from the determinants of the coefficients of even a,

and b in Egq's. (B.19) and (B.20).
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We can also define the regions of instability by means of an
asymptotic expansion of the equations of motion in terms of a small
parameter., In this case no new information will be obtained and its
application to the Mathieu equation is for the purpose of illustration
of the technique.

Following the procedure outlined in Section IT we will assume a

resonance condition to exist with constant amplitude and phase angle
2
y = alcos(wot + 8) + g ul(t) +q ug(t) + e e e (B.28)

in which the terms U, u «es+ include nonresonance terms. When

2’
g is a small parameter the first region of instability (for which

@, E‘vgf) will be defined in terms of the expansion

N -wO=Alq+A2q2+... (B.29)

Substituting into the differential equation, Eq. (B.l), one obtains

for terms up to the second power of g

2 2
2 du, - pdm,
- a.w-cos(w.t + 8) + g +q + a.a cos(w.t + 8)
170 0 dt2 dt2 1 0

(B.30)

+aqu +a q2u2 - 2ag cos anot[alcos(wot +8) + ¢ ul] =0

210




From Eq. (B.29) we can write

a=w§+2Alwoq+(2Aéno+A§)q2+. . . (B.31)

vhich, when substituted into Eq. (B.31), gives

au 2
d 1 2 d 2 2 2
{
a dt2 + g dt2 + 2al w,d cos(coot + &)+ q \2A2Luo+Al)alcos(wot + 8)

2 2 22 2 2
+Wwyg vy t+ 28w,y + wgg u, - a(woq + 2Ala>oq )[cos(Bth + 0)

22
+ cos(a)ot - 68))] - avjq“cos 2wt u; =0 (B.32)

Equating the coefficients of q one obtains

deul

dat 2

2
+ ealAlwocos(wot + 8) + Wity

- alwg[cos(anot + 8) + cos(wot -68)]=0 (B.33)

Equating the coefficients of the terms in cos mot so that the function

u:L does not include the resonance oscillation we see that this constant

amplitude resonance oscillation can only take place when 0 =

ny
> such

that
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0
A1=-"-'2 when 8=0or =
(B.34)
wO P 3t
Al=-—-2 when 5=-§ or >

must satisfy the relation

Also, Uy
afy 2
7 + gy = ala)ocos(&oot + 8) (B.35)
from which
(B.36)

&
w = -5 cos(3wot + 8)

in Eq. (B.33) and including the

Equating the coefficients of g
s one obtains

appropriate substitutions for uy

2
d™u
—_2 (2Aé.00+AJ2_)alcos(wot+6) - %; A8y cos(3wot+6)

at
2
+ wgu, = EalAla)ocos(&uot+5) - 2a.lAlu>Ocos(wot-6)
12 1.2 _
+ § a0g cos(wot-é) + 5 a0y cos(Su)ot+6) =0 (B.37)
wot so that u, will not include

Equating the coefficients of cos

the resonance oscillation

ive_z_—‘;ga.gn_,_ﬁ_ it
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al(zaéno + Ai) cos(wot + 8) - 2alAlecos(mot - 8)

a 2

+8 2%

ool

cos(wot -8 =0 (B.38)

This can be solved for A2 by appropriate substitution of Al from

the first approximation and the corresponding value of & such that

when
Al=(-D2-Q, §=0o0r=x , A2=‘:§L_6-m0

and when (B.39)
A1="L12_)Q’ 6=g°r%£’ A2=§5‘”o

Substituting the values derived above for Al and A2 into
Eg. (B.30) the results of the previous section are varified such that the

boundaries of the first resonance region are given by

The above approximation could be carried further by initial assumption

of more terms in the asymptotic expansion and repeating the sbove process.
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